
Octopus-Man: QoS-Driven Task Management for
Heterogeneous Multicores in Warehouse-Scale

Computers
Vinicius Petrucci⇤1, Michael A. Laurenzano†, John Doherty†, Yunqi Zhang†, Daniel Mossé‡, Jason Mars†, Lingjia Tang†

Clarity Lab
†University of Michigan, Ann Arbor, MI, USA

{mlaurenz,johndoh,yunqi,profmars,lingjia}@umich.edu

⇤Federal University of Bahia, Salvador, BA, Brazil
petrucci@dcc.ufba.br

‡University of Pittsburgh, Pittsburgh, PA, USA
mosse@cs.pitt.edu

Abstract— Heterogeneous multicore architectures have the po-
tential to improve energy efficiency by integrating power-efficient
wimpy cores with high-performing brawny cores. However, it
is an open question as how to deliver energy reduction while
ensuring the quality of service (QoS) of latency-sensitive web-
services running on such heterogeneous multicores in warehouse-
scale computers (WSCs).

In this work, we first investigate the implications of hetero-
geneous multicores in WSCs and show that directly adopting
heterogeneous multicores without re-designing the software stack
to provide QoS management leads to significant QoS violations.
We then present Octopus-Man, a novel QoS-aware task manage-
ment solution that dynamically maps latency-sensitive tasks to
the least power-hungry processing resources that are sufficient to
meet the QoS requirements. Using carefully-designed feedback-
control mechanisms, Octopus-Man addresses critical challenges
that emerge due to uncertainties in workload fluctuations and
adaptation dynamics in a real system. Our evaluation using
web-search and memcached running on a real-system Intel het-
erogeneous prototype demonstrates that Octopus-Man improves
energy efficiency by up to 41% (CPU power) and up to 15%
(system power) over an all-brawny WSC design while adhering
to specified QoS targets.

I. INTRODUCTION

The design methodology of modern warehouse-scale com-
puters (WSCs) [5] has been architecturally-homogeneous de-
signs [3], [6] that often exclusively use brawny (complex,
out-of-order) core types. As noted by recent works [17],
[42], commodity server grade chips such as Intel Xeons and
AMD Opterons comprise the entire fleet of Google’s and the
majority of Facebook’s WSC infrastructures as they are cheap
and easily replaceable. These brawny processors deliver high
performance, but at the cost of high power consumption.

While wimpy cores (simple, in-order architectures) offer
lower performance, they have significantly higher power effi-
ciency. There is a significant amount of prior work advocating
wimpy cores for WSC design in both industry [7], [21] and
academia [2], [26], [27], [38]. Although the energy efficiency

1Work was conducted as a postdoc fellow of Clairty Lab at the University
of Michigan.

of commodity wimpy cores can be realized for batch and
throughput-oriented workloads hosted in WSCs, the resulting
performance and quality of service (QoS) degradation of
latency-sensitive applications prohibits adopting wimpy cores
in production [24]. These latency-sensitive applications require
tight constraints on the QoS because they interact directly with
users. In particular, the tail of the latency distribution must
be kept below a QoS threshold [9]. Although wimpy cores
can provide advantages in power, cost, and performance per
dollar, web-service companies still primarily deploy and rely
on brawny cores to deliver high single-threaded performance
for complex latency-sensitive applications [24], [49].

Another architectural design point integrating both wimpy
and brawny cores may be promising for future server designs.
Examples of these heterogeneous multicore architectures in-
clude ARM’s big.LITTLE [21], for mobile platforms, and
Intel’s QuickIA prototype [7], for server platforms. In these
designs, wimpy and brawny cores share the memory address
space and are visible to a single operating system, enabling
fast task migration among the cores on a server. Prior work
on managing heterogeneous core resources is driven by either
hardware performance counters (e.g., instructions/cycle, cache
misses) [52] or CPU utilization [58]. Therefore, although
prior work has demonstrated the potential of heterogeneous
multicore systems, the proposed systems do not provide ex-
plicit QoS management or QoS guarantee for latency-sensitive
services in WSCs.

In this work, we first investigate the implications of lever-
aging heterogeneous multicore architectures for WSCs using
a real system prototype from Intel, the QuickIA platform [7],
and WSC workloads including web-search and memcached.
We find that simply replacing the underlying hardware for
heterogeneity without redesigning the system software stack
results in an unacceptable increase in QoS violations. In
addition, load fluctuations in WSCs, such as diurnal load
changes, present opportunities for energy efficiency that can
be exploited by migrating tasks between the heterogeneous
cores based on the dynamic load. Therefore, an intelligent

QoS-aware runtime system that manages brawny and wimpy
core resources to deliver energy efficiency gain while guaran-
teeing QoS is critical to a WSC composed of heterogeneous
multicores. Such a system must address two major design
challenges:

• Responsiveness - The QoS-aware runtime system needs to
readily respond to changes in the execution environment
such as time-varying load fluctuations and spikes, and
promptly adapt the system to meet the QoS targets in the
presence of these changes.

• Stability - The QoS-aware runtime needs to prevent oscil-
latory behavior that unnecessarily and frequently switches
between system configurations such as core mappings for
the latency-sensitive applications. Such oscillations can
negatively affect the application QoS.

In this paper, we design and prototype Octopus-Man,
a QoS-aware task management system that addresses these
challenges and dynamically manages tasks on heterogeneous
multicores. Driven by runtime QoS measurements, Octopus-
Man exploits load changes to allocate latency-sensitive tasks to
the least power-hungry processing resources that are sufficient
to meet the QoS requirements. By continuously monitoring
QoS changes and carefully expanding, contracting and mi-
grating between wimpy/brawny core resources, Octopus-Man
is able to meet tail latency requirements, while minimizing
power consumption and improving server energy efficiency.
Octopus-Man requires no extra hardware support beyond the
heterogeneous multicore substrate and no modification to the
host OS.

This work makes the following specific contributions:
• Investigation of Heterogeneous Multicore in WSCs —

We perform an investigation and describe the opportu-
nities and challenges of using heterogeneous multicore
servers for improving energy efficiency in WSCs. We find
that runtime task management is critical for meeting QoS
targets in latency-sensitive web services. (Section III)

• Octopus-Man Task Management — We present
Octopus-Man, an adaptive runtime system for managing
task assignment to heterogeneous core resources in WSCs
while reducing power consumption and ensuring that QoS
targets are met. (Section IV)

• Real System Prototype and Evaluation — We design
and deploy a functional prototype Octopus-Man along
with web-services including web-search (Apache Nutch)
and data-caching (memcached). The evaluation uses real
production load intensity traces from Google and real-
system prototype Intel’s QuickIA [7]. (Section V)

Our experimental results show that Octopus-Man reduces
CPU energy consumption by up to 41% and server-level
energy by up to 15%, while meeting the QoS targets on
tail latency as effectively as all-brawny WSC designs. We
also show that Octopus-Man can improve batch processing
throughput by 34% over the current all-brawny systems.

II. BACKGROUND

In this section, we first introduce the server selection
approaches, job scheduling techniques and quality of service
metrics that are commonly used in modern warehouse-scale

computers (WSCs). We then present an overview and discus-
sion on heterogeneous multicore architectures for WSCs.

A. Warehouse Scale Computers

Job Characteristics — WSCs host a fleet of machines
grouped into one or more clusters. Users submit jobs to the
cluster of machines, where a job consists of one of more
tasks [47]. There are two classes of jobs in WSCs: latency-
sensitive service jobs and throughput-oriented batch jobs.
Latency-sensitive jobs must meet certain QoS requirements
and often experience a time-varying pattern in their load. Batch
jobs, on the other hand, are typically throughput oriented and
do not have strict QoS constraints.

Cluster Scheduling — A cluster-wide scheduler is respon-
sible for placing and tracking the jobs on the available platform
resources [47], [53]. Each job’s required resources, such as the
number of processing cores and amount of memory needed,
is specified in a configuration file associated with the job.
Given the resource requirements, the cluster scheduler uses
a variant of the bin-packing algorithm to make job mapping
decisions [47], [53].

Quality of Service — QoS for service jobs in WSCs is
typically defined in the form of service level objectives (SLOs)
using statistical guarantees of application-level metrics such
as query latency. In addition to the average or median query
latency, quality of service often focuses on the tail distribution
of the latency to improve interactivity [9]. For example, a
quality of service target could be specified as “90% of the
search queries need to have a latency under 500 ms.”

B. Heterogeneous Multicore Architectures

Brawny vs. Wimpy — Although wimpy cores can be more
power efficient, most WSCs currently adopt homogeneous
brawny servers to ensure the quality of service for latency-
sensitive service jobs. This is because there are several limita-
tions in using wimpy cores that affect their broad adoption in
WSCs [24]. In some cases, single-threaded performance is still
important due to Amdahls’ law; the inherently serial computa-
tion by slow wimpy cores can dominate overall execution time.
Using wimpy cores requires additional parallelization efforts
to deal with many more subtasks. The variability in the tail of
latency distribution is also amplified with increased number of
computing units in the data center, since many more wimpy
cores would be needed to sustain the same performance as
that of brawny cores. This makes it more difficult to deliver
satisfactory latency requirements.

Heterogeneous multicores — Emerging heterogeneous
multicore designs [30] exploit the fact that applications’ re-
source requirements are different. Thus, by combining cores
that trade off performance with power to different degrees,
the resulting system can be more energy efficient than ho-
mogeneous systems. Several such architectures have come
to fruition, including ARM’s big.LITTLE [21] and Intel’s
QuickIA prototype [7]. QuickIA is a prototype for server-class
computing platforms that integrates Intel’s Atom and Xeon
cores. Given that our focus is on WSCs, in this paper we
focus our efforts on QuickIA (Section V).

20QPS 30QPS 45QPS

Q
P

S
/W

at
t

(n
o
rm

al
iz

ed
)

 0x

 2x

 4x

 6x

 8x

 10x

 12x

 14x

5QPS 10QPS

Fig. 1: Throughput per watt of web-search on wimpy cores at
various load levels (normalized to brawny cores)

III. HETEROGENEOUS MULTICORES IN WSCS:
OPPORTUNITIES AND CHALLENGES

In this section, we investigate the performance and energy
efficiency trade-offs for wimpy cores (Intel Atom) and brawny
cores (Intel Xeon) running a typical WSC workload (web-
search). We present the opportunities and challenges of using
heterogeneous multicore servers for improving energy effi-
ciency in WSCs, highlighting the need for an intelligent QoS-
aware runtime system to achieve both satisfactory performance
and high energy efficiency.

A. Wimpy vs. Brawny for WSC Workloads
We first study the energy efficiency and performance trade-

offs between wimpy and brawny cores using Intel’s QuickIA
heterogeneous platform [7] and the web-search (Apache
Nutch) benchmark from CloudSuite [16].

Energy Efficiency — Figure 1 presents the energy ef-
ficiency in QPS/Watt (queries per second per Watt) of a
wimpy core running a web-search job at different load levels,
normalized to running on a brawny core. In this experiment
we account for the power consumption of each processor type
in isolation. More details about the experimental setup are
presented in Section V. Figure 1 demonstrates that wimpy
cores are much more energy-efficient than brawny cores for
web-search jobs at various loads. Note that, as the load in-
creases, the energy-efficient benefit of wimpy cores decreases.
In fact, wimpy cores are much more energy-efficient at low
load because wimpy cores have very low idle power and larger
difference between the idle and peak power (better energy
proportionality) than brawny cores [49].

Query Latency — Figure 2 presents the 90th percentile
query latency achieved by wimpy cores vs. brawny cores at
different load levels for web-search. As shown in the figure,
when the load is low, especially below 20 QPS, the 90th
percentile query latency for wimpy and brawny cores are
relatively similar, as the web-search job does not put a lot
of pressure on the system. However, as the load intensity
increases, the query latency on wimpy cores increases rapidly,
and the gap in latency between wimpy and brawny cores
becomes much larger. At 40 QPS, the 90th percentile latency
on wimpy cores is 13X longer than the 90th percentile latency
on brawny cores. Considering the 90th percentile query latency
at 500ms as the QoS target, a wimpy core can sustain up to
35 QPS, while a brawny core can support as many as 80 QPS.

This figure shows that while brawny cores clearly achieve
lower latency at all load levels, at low load the latency

Fig. 2: 90th percentile query latency of web-search on wimpy
vs. brawny cores at various load levels

0 12 24 36 48
0

20

40

60

80

100

Hour of the day

Pe
rc

en
t o

f M
ax

 C
ap

ac
ity

QPS
Server Power

Figure 1: Example diurnal pattern in queries per
second (QPS) for a Web Search cluster: Non-peak peri-
ods provide significant opportunity for energy-proportional servers.
For a perfectly energy proportional server, the percentage of peak
power consumed and peak QPS would be the same. Server power
is estimated for systems with 45% idle power.

dynamic range and, though sometimes lightly loaded, are
rarely fully idle, even at fine time scales. Cluster-grain ap-
proaches that scale cluster size in response to load variation
are inapplicable to OLDI services because the number of
servers provisioned in a cluster is fixed. Cluster sizing is de-
termined primarily based on data set size instead of incom-
ing request throughput. For a cluster to process an OLDI
data set for even a single query with acceptable latency, the
data set must be partitioned over thousands of nodes that
act in parallel. Hence, the granularity at which systems can
be turned o� is at cluster- rather than node-level.

Fundamentally, the architecture of OLDI services demands
that power be conserved on a per-server basis; each server
must exhibit energy-proportionality for the cluster to be
energy-e�cient, and the latency impact of any power man-
agement actions must be limited. We find that systems
supporting OLDI services require a new approach to power
management: coordination of active low-power modes across
the entire utilization spectrum. We demonstrate that nei-
ther power management of a single server component nor
uncoordinated power management of multiple components
provide desirable power-latency tradeo�s.

We report the results of two major studies to better un-
derstand the power management needs of OLDI services.
First, we characterize a major OLDI workload, Google Web
Search, at thousand-server, cluster-wide scale in a produc-
tion environment to expose the opportunities (and non-op-
portunities) for active and idle low-power management. We
introduce a novel method of characterization, activity graphs,
which enable compact representation of the activity levels
of server components. Activity graphs provide designers the
ability to identify the potential of per-component active and
idle low-power modes at various service load levels. Second,
we perform a study of how latency constrains this potential,
making power management more di�cult. We construct and
validate a performance model of the Web Search workload
that predicts the 95th-percentile query latency under di�er-
ent low-power modes. We demonstrate that our framework
can predict 95th-percentile latency within 10% error. Using
this framework, we explore the power-performance tradeo�s
for available and future low-power modes.

We draw the following conclusions about power manage-
ment for major server components:

1) CPU active low-power modes provide the best
single power-performance mechanism, but are not
su�cient for energy-proportionality. Voltage and fre-
quency scaling (VFS) provides substantial power savings for

small changes in voltage and frequency in exchange for mod-
erate performance loss (see Figure 15). Looking forward,
industry trends indicate that VFS power savings will be re-
duced in future technology generations as the gap between
circuits’ nominal supply and threshold voltages shrink [6],
suggesting that power savings may not be realized from VFS
alone. Furthermore, we find that deep scaling yields poor
power-performance tradeo�s.

2) CPU idle low-power modes are su�cient at the
core level, but better management is needed for
shared caches and on-chip memory controllers. We
find that modern CPU cores have aggressive clock gating
modes (e.g., C1E) that conserve energy substantially; power
gating modes (e.g., core C6) are usable, but provide little
marginal benefit at the system level (see Figure 16). How-
ever, we observe that non-core components such as shared
caches and memory controllers must remain active as long as
any core in the system is active. Thus, we find opportunity
for full socket idle management (e.g, socket C6) is minimal.

3) There is great opportunity to save power in the
memory system with active low-power modes during
ample periods of underutilization. We observe that the
memory bus is often highly underutilized for periods of sev-
eral seconds. There is a great opportunity to develop active
low-power modes for memory (e.g., [10]) and we demonstrate
that these would provide the greatest marginal addition to
a server’s low-power modes. Because the memory system is
so tightly coupled to CPU activity, it is rare for DRAM idle
periods to last long enough to take advantage of existing idle
low-power modes (e.g., self-refresh) (see Figure 7).

4) Unlike many other data center workloads, full-
system idle power management (e.g., PowerNap) is
ine�ective for OLDI services. Previous research has
demonstrated that energy-proportionality can be approached
by rapidly transitioning between a full-system high-perform-
ance active and low-power inactive state to save power dur-
ing periods of brief idleness [20]. Whereas such a technique
works well for many workloads, we demonstrate that it is
inappropriate for the ODLI workload class. Because peri-
ods of full-system idleness are scarce in OLDI workloads, we
evaluate batching queries to coalesce idleness, but find that
the latency-power trade-o�s are not enticing.

5) The only way to achieve energy-proportional op-
eration with acceptable query latency is coordina-
tion of full-system active low-power modes. Rather
than requiring deep power savings out of any one compo-
nent, we observe that systems must be able to leverage mod-
erate power savings in all their major components. Since
full-system idleness is scarce, power savings must be achieved
with active low-power modes. Furthermore, system-wide co-
ordination of power-performance states is necessary to main-
tain system balance and achieve acceptable per-query la-
tency.

The rest of this paper is organized as follows. In Section 2,
we discuss the unique aspects of OLDI services, how these
impact power management, and prior work. To identify op-
portunities for power management, we present our cluster-
scale Web Search characterization in Section 3. In Section
4, we develop and validate a Web Search performance model
to determine which of these opportunities are viable from a
latency perspective, and draw conclusions from this model
in Section 5. Finally, in Section 6, we conclude.

Fig. 3: Load fluctuation and power consumption for web-
search running on Google servers, adapted from Meisner et
al. [46]

delivered by the wimpy core can be adequate and comes at
a much lower power cost, making wimpy cores an attractive
alternative at low load. The need for both high performance
cores at high load and energy efficient cores at low load lends
itself to core heterogeneous designs, which offer both core
types in a single server.

B. Energy Reduction Potentials of Heterogeneous Platforms
Figure 3, adapted from Meisner et al. [46], illustrates the

typical load intensity (in queries per second) and power
consumption for a web-search service running on Google
servers. This class of workload presents a wide dynamic load
range, experiencing long periods of low load. Moreover, during
the periods of low load, the power consumption of (current)
brawny servers is still relatively high; that is, the energy
consumption is not proportional to the amount of computation
accomplished by the brawny server [4].

Our insight is that the load varying nature of service jobs
coupled with the fact that, at low loads, the performance
of wimpy is sufficiently close to that of brawny, rendering
the core heterogeneous design point an attractive option.
Heterogeneous multicore architectures present the opportunity
to combine the best of both worlds by allowing tasks to
quickly migrate between wimpy and brawny cores at runtime
to meet the QoS target of service jobs and achieve high energy
efficiency.

C. Challenges of Adopting Heterogeneous Platforms
Despite the potential for energy optimization when employ-

ing core heterogeneous designs, QoS challenges arise when
directly adopting heterogeneous platforms in WSCs without an
effective task management runtime. To understand the need to
introduce such a QoS-aware runtime, we perform an analysis

 0%

 10%

 15%

 20%

 25%

 30%

50ms 100ms 150ms

%
 o

f
q
u

er
ie

s
v

io
la

ti
n
g
 t

h
e

la
te

n
cy

 t
ar

g
et Bin−packing scheduling on Homogeneous Brawny Servers

Bin−packing scheduling on Hetero−CMP

 5%

Fig. 4: QoS violations for web-search for homogeneous
brawny servers vs. heterogeneous servers at various latency
targets.

of simply replacing current all-brawny cores with heteroge-
neous multicores without redesigning the system software
stack.

Figure 4 presents the number of QoS violations given
various latency targets for web-search queries. We compare a
WSC composed of homogeneous servers with 4 brawny cores
(Xeon) per server versus a WSC composed of heterogeneous
servers with 2 brawny and 2 wimpy (Atom) cores per server.
In this experiment, each web-search task requires 2 cores and
is mapped to each server by the cluster scheduler using the
standard bin-packing algorithm commonly found in modern
WSCs [47], [53]. The bin-packing algorithm randomly assigns
each job to a machine that has at least as many available cores
as are needed by the job.

As shown in Figure 4, using a standard bin-packing algo-
rithm that is unaware of the heterogeneity or QoS causes sig-
nificantly more QoS violations with heterogeneous platforms.
For example, 17% of all queries on the heterogeneous platform
violate their QoS target of 100ms. For heterogeneous multicore
to be a viable option in WSC design, we must provide a
mechanism to allow latency-sensitive jobs to meet QoS targets
while optimizing for energy efficiency. This is the primary goal
of Octopus-Man.

IV. OCTOPUS-MAN

In this section, we introduce Octopus-Man, a runtime
system that manages brawny/wimpy core resources in WSCs,
adaptively allocating the necessary and the least power-hungry
core resources for latency-sensitive applications to ensure QoS
while maximizing energy efficiency.

A. Design Goals and Challenges

The major design goal of Octopus-Man is to ensure that the
QoS targets of latency-sensitive jobs are satisfied and to max-
imize the energy efficiency. Some WSCs co-locate latency-
sensitive applications (service jobs) and batch applications
(throughput-oriented jobs) on shared servers to improve server
utilization [42]. For the shared servers, Octopus-Man ensures
that the QoS target of latency-sensitive jobs is met while
maximizing the throughput of batch jobs.

Octopus-Man is designed to address the important chal-
lenge of achieving both responsiveness and stability. Firstly,
Octopus-Man must be able to detect and be responsive to

Heterogeneous server

Octopus-Man

QoS
Monitor

Octopus
Mapper

 Wimpy cores
Brawny cores

Cluster scheduler

Batch-mode
jobs

Latency-sensitive
jobs

Fig. 5: Overview of Octopus-Man runtime system

changes in the system’s execution environment such as work-
load fluctuations and co-location interferences. It must control
the system via migrating tasks to appropriate core resources
to ensure that the managed applications meet QoS goals
in the presence of these changes. Secondly, Octopus-Man
must prevent the server system from unnecessary oscillations
between core mappings, negatively affecting the QoS.

B. Octopus-Man Overview
Octopus-Man is built upon two insights: 1) heterogeneous

multicores allow tasks within a server to be quickly migrated
between wimpy and brawny cores at runtime, and 2) the
latency difference between brawny and wimpy cores is sig-
nificantly smaller at low load. By leveraging load-fluctuations,
Octopus-Man migrates latency-sensitive applications to wimpy
cores during periods of low load to achieve high energy
efficiency without impacting user experience.

The Octopus-Man framework is depicted in Figure 5.
Octopus-Man consists of two main components: the QoS
Monitor and the Octopus Mapper.

QoS Monitor — The QoS monitor is responsible for
collecting job performance data from the heterogeneous server
using in-place continuous profiling. Existing runtime mon-
itoring systems are deployed in modern WSCs to continu-
ously gather detailed task performance information [50]. The
Octopus-Man system is designed to leverage these light-weight
monitoring systems. There are a number of performance
and QoS metrics available to Octopus-Man including the
application-level metrics (e.g., query latency for web-search)
and operating system/hardware performance counter metrics
(e.g., CPU utilization, instructions per cycle and cache misses).

Octopus Mapper — Based on dynamic performance
profiles collected by the QoS Monitor, the Octopus Mapper
makes job mapping decisions and adapts the heterogeneous
server system to improve energy efficiency. Figure 6 illustrates
an execution example of the Octopus-Man when managing
co-located batch jobs and a web-search (service job) on a
shared server following the fluctuating load of a typical diurnal

 Octopus-Man

Heterogeneous server

Wimpy cores
Brawny cores

Search job

 Octopus-Man

Heterogeneous server

Wimpy cores
Brawny cores

Batch jobs Run batch jobs
(or power gate cores)

Search job

(A) Contracting Octopus (B) Expanding Octopus

Fig. 6: Octopus-Man managing a web-search and batch jobs,
(A) contracting during low intensity load and (B) expanding
during high intensity load

pattern. As shown in Figure 6-A, during the periods of low
utilization of the service job, the Octopus-Man system may run
web services on wimpy cores while turning off some power-
hungry brawny cores to minimize energy consumption (on a
dedicated server for latency sensitive applications) or using
the available brawny cores to accelerate batch processing (on
a shared server hosting both batch and latency-sensitive jobs).
When the service job experiences high load intensity, as seen
in Figure 6-B, the Octopus-Man system allocates the high-
performance brawny cores to the latency-sensitive service job
to meet its specified QoS target.

In the rest of this section, we will describe in details
the design of Octopus-Man Mapper including its algorithms
to determine the appropriate task migration strategies. We
will first introduce the formal notations for core mappings
and transitions in Section IV-C. We will then present two
designs of the decision algorithms of Octopus-Man Mapper
in Sections IV-D and IV-E. Finally we will present how
Octopus-Man addresses two critical design challenges and the
implementation details in Sections IV-F and IV-G.

C. Core Mapping and Transition
A heterogeneous multi-core system has a discrete set of

core configurations. We consider N wimpy cores and M
brawny cores in a system, where the wimpy core set is
W = {w1, . . . , wi

, . . . , w
N

} and the brawny core set is B =
{b1, . . . , bj , . . . , bM}. We then specify a resource allocation
set A, in ascending order based on the power consumption of
each core configuration as follows:

A = {{w1}, {w1, w2}, . . . , {w1, w2, . . . , wN

}, {b1, . . . , bL},
{b1, . . . , bL, bL+1}, {b1, . . . , bL, bL+1, . . . , bM}}
When migrating a latency-sensitive job from wimpy to

brawny cores, we define L as the minimal number of brawny
cores necessary to provide the same processing capacity as N
wimpy cores. This ensures that the new job mapping does not
violate the service QoS target after the migration.

Octopus-Man determines the core mapping based on QoS,
for example, by increasing the core resources when QoS is
low. This methodology is general and can handle mappings

r
System

u(t)e(t)

y(t)

∑
-

+
∑

Controller

P Kp e(t)

I Ki ∑e(t)

D Kd de(t)/dt

+

+

+

Fig. 7: Basic elements of the PID control system

that include both wimpy and brawny cores. In our system we
do not consider a service task running simultaneously on both
wimpy and brawny cores because there is no noticeable QoS
improvement on our heterogeneous platform, Intel QuickIA,
for this mixed mapping over brawny/wimpy-only mappings. In
addition, allocation of CPU resources in modern data centers is
typically at the granularity of whole cores whereby each task
has a reservation of cores and do not timeshare with other
applications [11]. Therefore, we also do not consider service
and batch jobs sharing the same core.

Next, we present two designs for the mapping algorithm
used in the Octopus-Man mapper: (1) a Proportional-Integral-
Derivative (PID) control system [23] and (2) a deadzone state
machine. PID controller is a classic control loop feedback
algorithm widely used in industrial control systems [23]. Our
deadzone state machine is inspired by a real-time deadzone-
based scheme for voltage scaling and latency control in web
servers [25].

D. Design 1: PID Control System

We first investigate using PID control in Octopus-Man
to decide the appropriate task mapping and migration on a
heterogeneous multicore server. The goal of PID control is to
make sure that the underlying controlled system operates as
close as possible to a specified set point. In our case, PID
control aims to manage the underlying system, i.e., latency-
sensitive tasks executing on a heterogeneous multicore, so
that the achieved QoS of the system is as close as possible
to the specified QoS target. To this end, the PID controller
continuously monitors the system feedback, i.e., QoS of the
system, and adapts the system configurations, i.e., the task
mappings on the heterogeneous multicore accordingly over
time.

Figure 7 presents the basic structure of a PID controlled
feedback loop. As depicted in Figure 7, the PID control takes
a controller reference r as the desired QoS target (e.g., 90%-
ile latency at 500ms). The system feedback is given by the
controller error signal e(t), defined as the difference between
the QoS target r and the current monitored QoS value y(t)
at time t; that is, e(t) = r � y(t). Based on the control
error e(t), the PID control system calculates three terms:
the proportional (current error rate), the integral (overall net
errors) and the derivative (correction rate) of the error signal.
The PID controller equation u(t) then associates each term
with a weight (K

p

, K
i

and K
d

) and sums up the three terms
as follows:

u(t) = K
p

e(t) +K
i

tX

k=0

e(k)T +K
d

e(t)� e(t� 1)

T
(1)

The controller output u(t) from Equation 1 indicates the ap-
propriate system configuration for minimizing the error in the
next sampling interval error, e(t+1). In the case of Octopus-
Man, u(t) directly dicates the appropriate wimpy/brawny core
configuration the system should be adjusted to to achieve the
QoS target.

Since the PID control output u(t) has a continuous range
and our heterogeneous system has a discrete set of core
configurations, we use a mapping scheme that relates the
control output to the set of core configurations. We set the
minimum and maximum values of the controller output (e.g.,
min u = 0 and max u = 255), and any value between
the controller limits is linearly scaled to a position in the
set of wimpy/brawny core configurations (set A specified in
Section IV-C). The min u is mapped to one wimpy core {w1}
and max u is mapped to {b1, . . . , bL, bL+1, . . . , bM}} brawny
cores.

The controller’s sampling interval T specifies how often the
monitored QoS variables are sampled at runtime. The choice
of an appropriate sampling interval should be based on the
dynamics of the system being controlled, and Section IV-F
describes our methodology for deriving this parameter.

PID Controller Configuration — To carefully tune and
configure PID to achieve high-quality control, that is to
determine appropriate values for parameters K

p

, K
i

and K
d

in Equation 1, we employ the commonly used root locus
method [18].

To use root locus method to determine the suitable param-
eter values, we need to first identify a transfer function of
our system. The transfer function is a formal representation
of the input-output relationship for the system (i.e., input as
measured QoS of the system and output as core mappings).
Root locus method then conducts sensitivity analysis of the
parameters based on the transfer function to select suitable
parameter values for a high-quality, stable controller.

As in prior work [39], we use profiling data to build a model
to determine the transfer function of our system. We collect
the average latency of queries for each application at different
load levels and build a linear regression model that predicts
the QoS for a given system configuration (core mapping) as
shown in Equation 2. The system input (u) represents the core
configurations and (y) represents the corresponding system
output, i.e., the QoS of the system; where m represents the
time at which data is collected from the system and n is the
order of the equation modeling the system. We use n = 1 to
build our model that best represents our system. We model the
system using the differential equation [19] and use the least
squares [39] to determine the g and h parameters in Equation
2.

y(m) =
nX

i=1

g
i

u(m� i) +
nX

i=1

h
i

y(m� i) (2)

Transforming Equation 2 into the discrete time domain, we
arrive at Equation 3. Combining Equation 3 and Equation 1,

1"
Wimpy&

Ini&alize"
2"

Wimpy&
N"

Wimpy&
…&

QoS"alert"

QoS"safe"

QoS"alert"

QoS"safe"

M51"
Brawny&

L+1"
Brawny&

L"
Brawny&

…&

QoS"alert"

QoS"alert"QoS"alert"

QoS"safe" QoS"safe"

QoS"safe"

M"
Brawny&

QoS"alert"

QoS"safe"

Fig. 8: State machine used in deadzone-based Octopus Mapper

we arrive at Equation 4, a combined representation of the
controller parameters and the controlled system in discrete
time domain.

P (z) =
y(z)

u(z)
=

h1

z � g1
(3)

C(z) =
u(z)

e(z)
= K

p

+K
i

T

z � 1
+K

d

(
z � 1

T
)2 (4)

G(z) =
C(z)P (z)

1 + C(z)P (z)
(5)

We then perform a root locus analysis using Equation 5 [18]
to narrow down an appropriate range of parameters (K

p

, K
i

and K
d

) for the PID controller for each latency-sensitive
application. Using root locus, we evaluate the behavior of
the PID controller when the gain K

p

is adjusted; K
i

and K
d

are tuned based on the values of the gain. The method helps
visualize the stability of the controller and observe the effects
of varying the gain. We then performed a parameter tuning
over that range to determine the parameters to achieve a stable
controller.

E. Design 2: Deadzone State Machine
Here we present a deadzone based design of Octopus-Man

mapper, which models the Octopus-Man’s task mapping algo-
rithm using a state machine. The Octopus-Man state machine,
illustrated in Figure 8, consists of a set of states and transitions
between those states. The available core configurations in
the controlled system are represented by the possible states.
Note that each element from the set of wimpy/brawny core
configurations A (Section IV-C) is mapped to a state in
the transition system. At any given time, the Octopus-Man
state machine is in only one state: the current state. The
transition from one state to another is initiated by triggering
conditions specified by QoS rules. Octopus-Man uses this
representation to map the latency-sensitive job to N wimpy
cores or M brawny cores to optimize for energy reduction or
job throughput while respecting latency constraints.

For each latency-sensitive job controlled by Octopus-Man,
we specify a QoS controlled variable as the percentile (e.g,
90th or 95th) of the monitored request latency and a QoS

(A) Memcached workload (B) Web-search workload

Fig. 9: Detecting adequate settling times (gray area in the figures) due to core switching

target that the system needs to ensure. Then the QoS alert
trigger condition is defined as:

QoS
variable

> QoS
target

· UP
thr

The QoS safe trigger is defined as:

QoS
variable

< QoS
target

·DOWN
thr

The QoS rules state that when the measured QoS latency
variable exceeds an upper bound (or drops below a lower
bound), Octopus-Man expands (or contracts) the number of
cores allocated to the latency-sensitive job to meet its specified
QoS target. The rationale for the upper threshold is that,
for any two consecutive QoS measures from the workload
distribution, the following conditional probability as a function
of the UP

thr

must be satisfied [25]:

P (QoS

k+1 > QoS

target

|QoS

k

< UP

thr

·QoS

target

) <= QoS

vio

The QoS
vio

is the maximum percentage of QoS violation
expected in the system (e.g., 5%). The upper threshold UP

thr

is obtained empirically from the workload distribution as in
[25]. An adequate down threshold DOWN

thr

is then selected
to minimize oscillation while still delivering energy efficiency.
A sampling interval is used to periodically evaluate the QoS
trigger rules and potentially perform the state transitions in the
system. The details on selecting these parameters are discussed
in Section IV-F.

F. System Responsiveness and Stability
Here we describe how Octopus-Man addresses the following

two important challenges: Responsiveness and Stability.
Responsiveness — To meet the responsiveness criterion,

we need to determine the suitable sampling interval, which
specifies how often Octopus-Man should sample the monitored
QoS and decide whether to transition to a new task-to-core
mapping configuration.

We observe that typical WSC applications (e.g., web-search
and memcached) often exhibit short-term high-variability QoS
when subjected to excessively frequent dynamic core switch-
ing. The sampling interval thus should consider the time re-
quired for (A) performing task-to-core dynamic configuration
and (B) waiting for the updated QoS measurements to stabi-
lize; that is, reaching and remaining within a relatively small
range (e.g., 5%-10%) of the final stable QoS measure. This
waiting time is known as settling time in control systems [18].

We specify the sampling interval as the minimum moni-
toring interval provided by each latency-sensitive application
plus the required settling time. This allows Octopus-Man to
react quickly to fluctuating load without causing excessive
switching behaviors. The default monitoring (QoS reporting)
interval for Memcached is every second, whereas web-search
(Apache Nutch) typically requires about five seconds to update
the logs of query processing times. In both cases, the overhead
of switching cores on/off and migrating tasks are negligible (in
the order of microseconds to few milliseconds [8], [33], [40]).

To determine an appropriate settling time for each latency-
sensitive application, we perform an automatic profiling. In
the profiling, we change the core mapping to observe the
impact on the QoS over time. Figure 9 presents varying core
configurations for each application and its impact on QoS and
queries per second. The gray area in the figure represents
the settling time needed for memcached and web-search
application. This corresponds to the time interval from the
moment of a core switching until the slope of two consecutive
QoS measures stabilizes (less than 10% variation between
successive measurements).

Stability — Stability is an important issue for both PID
control and deadzone state machine designs. For PID control,
we rely on the root locus methodology to configure a stable
controller [18]. For the deadzone state machine, we notice
that the QoS trigger rules allow for (1) anticipating the QoS
violation by setting an upper threshold to quickly allocate
resources before QoS violations even occur, and 2) minimizing
oscillatory behavior by using the down threshold when deal-

locating resources. To achieve stability, we need to determine
the appropriate values for these thresholds, especially the down
threshold.

Figure 10 highlights the importance of selecting an adequate
threshold parameter to avoid the oscillatory behavior. In this
experiment, we notice that 46% of QoS violations are due to
excessive task migrations. We propose a solution to address
this issue by detecting such oscillatory behavior and adjusting
the threshold parameter to reduce the oscillation’s negative
impact on the application QoS.

Fig. 10: Web-search execution when deadzone thresholds
are set as UP thr=0.8, DOWN thr=0.3. High QoS violations
occur due to oscillatory behavior caused by inappropriate
threshold values

Figure 11 illustrates our mechanism for the deadzone state
machine to automatically select the down threshold parameter
for a given application. The idea is to identify an oscillatory
pattern characterized by a QoS

alert

event followed imme-
diately by a QoS

safe

event and then followed by another
QoS

alert

. Once this oscillatory pattern is detected, Octopus-
Man adjusts the down threshold to accommodate the QoS
variability when adapting the system, for example, adjusting
the threshold from 0.6 to 0.5 as shown in the figure. This
works because increasing the service capacity (e.g., moving
a service job from wimpy to brawny cores) should not make
the QoS variable drop below the down threshold and trigger
an unnecessary new adaptation (e.g., moving the service job
back to wimpy cores) in the next sampling interval. We present
in Section V experiments evaluating our adaptive deadzone
technique.

G. Implementation Details

Octopus-Man is a user-level process running on Linux OS
that consists of monitor and mapper modules. The monitor
module collects runtime measurements of the query/request
latency via a log-file (in RAM filesystem) interface with
running service jobs such as the Apache Nutch web server
and memcached server. The monitor module also reports the
aggregated IPS (instructions per second) by measuring the

Time

Up_thr = 0.8

QoS target

QoS alert! (increase
computing capacity)

With small probability (1%)
increase down_thr

Oscillatory behavior! (need to decrease down_thr)

Down_thr = 0.5

. . .

QoS safe, but just after a QoS alert

Down_thr = 0.6

Fig. 11: Illustration of dynamically selecting the deadzone
thresholds

Wimpy core socket

Front side bus

Brawny core socket

Atom

L2 cache
(1MB)

Atom
Xeon Xeon

L2 cache
(6MB)

Memory

Fig. 12: Heterogeneous processor platform (Intel’s QuickIA)

hardware performance event retired_instructions of
each core on each monitoring interval [56]. We build an
instance of the monitor module for each latency-sensitive
application. The actuator module is responsible for binding
tasks to cores via Linux sched_setaffinity system call.
Octopus-Man quickly suspends/resumes the batch jobs via OS
signals (SIGSTOP and SIGCONT in Linux) to manage the
execution of batch jobs on the heterogeneous cores.

V. EVALUATION

We evaluate Octopus-Man on Intel QuickIA platform using
web-search (Apache Nutch) and data-caching (memcached)
workloads from CloudSuite [16].

A. Intel QuickIA Prototype
We use the Intel QuickIA platform [7] which integrates a

high-performance brawny processor (Xeon) and a low-power
wimpy processor (Atom) on the same platform (Figure 12).
This heterogeneous platform provides core types with different
micro-architecture designs (simple in-order vs. aggressive out-
of-order) but the same ISA.

Table I summarizes the CPU power consumption for the
Intel Xeon/Atom cores that comprise our Quick IA proto-
type [26], showing that the wimpy core has a very low idle

Core type Peak power Idle power
Xeon 5450 18.75 W 9.625 W
Atom N330 2.15 W 0.7 W

TABLE I: Power consumption of heterogeneous cores [26]

power and also consumes on average much less (9.7⇥ less)
power than a brawny core.

We quantify CPU power using power measurements and
CPU utilization as in prior work [14], [51], [60], where
the power consumption is linearly approximated using CPU
utilization. This model is used to characterize the benefits of
core heterogeneity in the presence of core-level power gating
techniques found in modern CPUs.

We also provide system power measurement directly using
a WattsUp Pro power meter [12]. These measurements reflect
the power consumed by the entire machine (the power drawn
at the outlet), including the CPUs. We report the dynamic
power consumption by subtracting the power consumed when
the machine is completely idle.

B. Workload Configurations

We adapted the web-search workload generator (Faban) and
the memcached client generator (from Cloudsuite) to issue
query requests driven by a time-varying production load trace
using the workload profile as shown Figure 3 and described in
previous work [46]. We specify the target QoS for web-search
as 500ms (90th percentile query latency) as prescribed by
CloudSuite [16]. For memcached, we use 1ms (95th percentile
query latency) as the QoS target. This was determined by
measuring the latency achieved by the brawny cores on our
experimental platform at peak load (80% of the maximum
possible load). Note that this QoS target reflects the capability
of our experimental machine, and is actually much lower
than the QoS target (10ms) specified in Cloudsuite [16].
The maximum-capacity load issued by the load generator is
configured so that web-search and memcached running on
brawny cores can meet the specified query latency target.

C. QoS Guarantee and Energy Reduction

We evaluate the effectiveness of Octopus-Man on meeting
the QoS requirements of web-search and memcached, while
exploiting load fluctuations and mapping the tasks to the most
suitable heterogeneous cores in the system to achieve high
energy efficiency.

Memcached — Figure 13-A shows the performance of
the memcached workload using the baseline Static all-brawny
core mapping during a 48-hour period [46]; each hour in the
original workload corresponds to one minute execution in our
experiments. The top plot presents the 95th percentile QoS
behavior; the target is 1 ms indicated by the red line. The
middle plot presents mapping decisions and the bottom plot
shows the achieved throughput, requests per second (RPS).

Figures 13-B and 13-C show memcached managed by
Octopus-Man using the PID and Deadzone schemes, respec-
tively. Octopus-Man dynamically decides the core resources
allocated for memcached based on the measured QoS (95th
percentile query latency), migrating the job between brawny

and wimpy cores, while the Static mapping (Figure 13-A)
keeps memcached on brawny cores.

Octopus-Man’s mapping algorithm using PID or Deadzone
aims to adapt to the load and QoS changes. The PID control
works by monitoring the QoS and minimizing the controller
error; that is, keeping the measured QoS as close as possible
to the QoS target. However, we notice that this particular
behavior causes many oscillations in the system, as shown
in the middle plot of Figure 13-B. The large amount of
oscillations in turn incurs severe QoS degradation, as shown in
the top plot of Figure 13-B. On the other hand, Octopus-Man
using the deadzone strategy can help mitigate this oscillation
effect, as shown in Figure 13-C. We notice that from 0s to
250s, Octopus-Man adaptively adjusts the down threshold to
minimize the oscillatory behavior. The final stable threshold
found was UP

thr

= 0.8 and DOWN
thr

= 0.1. Compared
to PID, Octopus-Man (Deadzone) with dynamic adjustment
significantly reduced QoS violations.

Web-search — Figure 14-A shows the baseline Static all-
brawny core mapping, Figure 14-B the PID control and 14-C
the Deadzone scheme for the web-search workload. Similar
to the memcached workload, the static mapping provides the
best QoS, which is the upper bound for any dynamic mapping
method, while Octopus-Man’s mapping decisions performed
by PID and Deadzone aim to monitor the QoS target and
exploit the load fluctuations. The PID is more aggressive at
performing task mapping to reduce energy consumption, but
the excessive task switching activities have negative effects
on the application QoS. Deadzone mitigates this issue by
dynamically adjusting the QoS thresholds that trigger the re-
mapping. This leads to less oscillation and better QoS.

Results Summary — Table II and Table III summarize
the QoS behavior and energy reduction for memcached and
web-search using different mapping options: Static all-brawny,
Static all-wimpy, Octopus-Man (PID), Octopus-Man (Dead-
zone). We compare the QoS and energy consumption of each
mapping scheme to the static all-brawny mapping as baseline.
On each sampling interval we compute whether or not the
measured QoS violates the QoS target. The QoS guarantee is
the percent of the samples that the measured QoS is under
the target (1 - QoS violations%). In case there is a violation,
we compute the average QoS tardiness as the measured QoS
value divided by the QoS target, quantifying how intense the
QoS violation was.

As shown in Table II and Table III, Static all-wimpy cores
cannot meet the required QoS for memcached and web-search.
Octopus-Man using the PID control trades some power for
better QoS, but as discussed earlier (Figures 13 and 14),
the application QoS is degraded due to excessive dynamic
task adaptations/mappings (2.5⇥ to 10⇥ more adaptations).
Octopus-Man using deadzone is capable of delivering the
best trade-off between QoS guarantee and energy reduction.
Octopus-Man deadzone meets the QoS at 99.8% for mem-
cached and at 91% for web-search with QoS tardiness close to
the static all-brawny mapping. The CPU energy consumption
is reduced by 41% for memcached and 26% for web-search.
The measured dynamic system power is reduced by 15% for
memcached and 9% for web-search.

It is worth noting that, in contrast to Octopus-Man, prior

(A) Static (always brawny cores) (B) Octopus-Man (PID Control) (C) Octopus-Man (Deadzone)

Fig. 13: Memcached execution on QuickIA. PID performs 10⇥ more task migrations than Deadzone, and has more QoS
violations

(A) Static (always brawny cores) (B) Octopus-Man (PID Control) (C) Octopus-Man (Deadzone)

Fig. 14: Web-search execution on QuickIA. PID performs 2.5⇥ more task migrations than Deadzone, and has more QoS
violations

Mapping QoS guarantee QoS tardiness Energy reduction (CPU) Energy reduction (System)
Static (Brawny) 99.9% 1.06 – –
Static (Wimpy) 34.6% 3.02 85% 40%

Octopus-Man (PID) 61.3% 1.66 49% 25%
Octopus-Man (Deadzone) 99.8% 1.06 41% 15%

TABLE II: Memcached QoS behavior and energy reduction

Mapping QoS guarantee QoS tardiness Energy reduction (CPU) Energy reduction (System)
Static (Brawny) 99% 1.29 – –
Static (Wimpy) 41% 4.52 90% 51%

Octopus-Man (PID) 45% 3.56 74% 19%
Octopus-Man (Deadzone) 91% 1.87 26% 9%

TABLE III: Web-search QoS behavior and energy reduction

work does not allow for QoS guarantees for latency-sensitive
services since they are driven by either hardware performance
counters (e.g., IPC, cache misses) [52] or CPU utilization [58]
without providing explicit QoS management. For example,
severe QoS degradation (95%-tile latency penalty of 254%
and 5,989%) is reported for two datacenter workloads in prior
work [58]. Such high latency degradations would likely violate
QoS guarantees.

D. Improving Batch Throughput While Meeting QoS
Another use of the servers during low load periods in data

centers is to co-locate batch jobs with service jobs on the
same server. In this section, we evaluate the effectiveness
of Octopus-Man (Deadzone) for improving the throughput of

batch jobs while guaranteeing QoS of service jobs when batch
jobs are co-located with web-search.

Throughput Improvement — Figure 15 presents the
throughput improvement achieved by Octopus-Man compared
to the Static mapping policy across 12 co-running batch appli-
cations from the SPEC CPU2006 benchmarks. Static keeps the
web-search job on the brawny cores and the batch applications
on the two wimpy cores. Octopus-Man, on the other hand, dy-
namically maps web-search and the batch applications across
the wimpy and brawny cores. At a particular point in time,
the number of batch jobs running on the system corresponds
to the number of cores not employed by the latency-sensitive
application. We use aggregated IPS (instructions per second)

Distribution %−ile

0% 20% 40% 60% 80% 95%

Q
u

er
y
 L

at
en

cy
 (

m
s)

0

50

100

150

200

Octopus−Man

Static−Mapping

Fig. 16: Latency CDF of co-locating
web-search and calculix

Distribution %−ile

0% 20% 40% 60% 80% 95%

Q
u

er
y
 L

at
en

cy
 (

m
s)

0

50

100

150

200

Octopus−Man

Static−Mapping

Fig. 17: Latency CDF of co-locating
web-search and lbm

Distribution %−ile

0% 20% 40% 60% 80% 95%

Q
u

er
y
 L

at
en

cy
 (

m
s)

0

50

100

150

200

Octopus−Man

Static−Mapping

Fig. 18: Latency CDF of co-locating
web-search and namd

 0.9x
 1x

 1.1x
 1.2x
 1.3x
 1.4x
 1.5x
 1.6x

ze
u

sm
p

g
ro

m
ac

s

ca
ct

u
sA

D
M

n
am

d

so
p
le

x

p
o
v
ra

y

ca
lc

u
li

x

sj
en

g

li
b

q
u
an

tu
m

to
n
to

lb
m

as
ta

r

m
ea

n

IP
S

 (
n

o
rm

al
iz

ed
)

Static−Mapping
Octopus−Man

Fig. 15: Throughput improvement using Octopus-Man with
batch job co-location

to characterize the throughput of batch applications. Latency-
sensitive applications are measured using application-level
QoS metrics.

As shown in Figure 15, Octopus-Man always achieves
higher throughput than the static mapping. On average,
Octopus-Man achieves 34% throughput improvement for batch
applications over the static mapping. The maximum (51%)
throughput improvement is achieved when web-search is co-
running with calculix, and minimal (12%) improvement
when co-running with libquantum.

The throughput improvement is due to the fact that Octopus-
Man can dynamically determine the minimum core resources
needed by web-search for its satisfactory QoS, while using
the rest of the resources for batch applications to maximize
the throughput. For example, when web-search is experiencing
very low load, Octopus-Man determines that 1 wimpy core is
sufficient for its QoS target and reduces the core allocation
for web-search accordingly, dynamically mapping batch ap-
plications to the other 3 cores to maximize throughput. When
the load for web-search increases, Octopus-Man reallocates
brawny core resources to web-search to ensure acceptable
query latency during high/peak load.

QoS Guarantees — In addition to improving the batch
throughput, we demonstrate that Octopus-Man delivers satis-
factory QoS for web-search. Figures 16, 17, 18 present the
cumulative distribution function (CDF) of web-search’s query
latency when it is co-running with 3 different representative
batch jobs, respectively calculix, lbm, and namd. We selected
benchmarks calculix and lbm to present because they rep-
resent compute-intensive and memory-intensive applications.
Benchmark namd is selected because web-search experienced

the worst QoS degradation when co-running with it. In each
figure, the orange and red areas indicate the latency distri-
bution achieved by the Static mapping and Octopus-Man,
respectively. For example, in Figure 16, 60% of the queries
are served within 23ms by Octopus-Man (red line) and 22ms
by static mapping on Brawny (orange line). As long as the tail
latency at the vertical line is within the green shaded zone, the
QoS target is satisfied. As shown in these three figures, the
query latency distribution achieved by Octopus-Man is very
close to the static mapping, which always executes the web-
search on 2 brawny cores. In all cases, the tail latency by
Octopus-Man is shorter than the target, indicating satisfactory
QoS.

VI. RELATED WORK

The energy impact of warehouse-scale computers (WSCs)
is large and has received much attention in recent years. As
a result, there is a growing body of literature on the use of
green energy [1], [20], [32], the overall energy footprint [48]
and energy proportionality [4], [37], [41] in datacenters/WSCs.
Our work focuses on improving the energy efficiency and
proportionality of latency-sensitive applications in WSCs as
well as the throughput of batch applications by mapping
them to wimpy/brawny cores within a heterogeneous multicore
architecture.

The energy and performance trade-offs between different
types of general purpose processors are well-documented [13],
[29]. Heterogeneity between servers [43] and specialization
[34], [36] have been shown to produce efficient WSC designs.
In WSCs, node-level and cluster-level techniques have been
proposed [10], [22], [31], [42], [44], [45], [54], [55], [59],
[61] to take advantage of architectural heterogeneity between
servers and/or perform resource managment to improve effi-
ciency in WSCs. In this work, we go a step further and exploit
heterogeneity at the core-level within the server to deal with
QoS and load-aware task scheduling.

Other work has explored combining cores of different
capabilities within the server in WSCs. In [58], Wong et al.
propose an architecture that combines commodity processors
of varying capability as close together as a single board to cope
with long-term changes in system load and improve energy
proportionality. In contrast, our work utilizes architectures
whose cores are tightly coupled and share memory. This allows
for very fast task migration and responsiveness to changes
while providing strict QoS guarantees.

Scheduling for heterogeneous multicore architectures has
also been studied in prior work [8], [15], [28], [35], [52], [57].
Our scheduling approach is unique because it seeks to achieve
multiple objectives, guaranteeing strict QoS/latency constraints
for user-facing applications while improving throughput for
batch applications in WSCs.

VII. CONCLUSION

In this work we describe a task management solution,
Octopus-Man, that leverages a mixture of wimpy and brawny
cores on core-heterogeneous systems to deliver improve en-
ergy efficiency and workload throughput in Warehouse Scale
Computers (WSCs). Octopus-Man exploits the periods of low
load common among latency-sensitive jobs, mapping those
jobs to the least power-hungry processing resources that can
satisfy their QoS requirements, thus greatly improving energy
efficiency or freeing up high performance resources for other
work.

We designed, implemented, and evaluated Octopus-Man
on a real heterogeneous core platform (Intel QuickIA) ex-
perimenting on two different workloads – web-search and
memcached – using realistic workload profiles. We show
that Octopus-Man can improve energy efficiency over current
scheduling policies by up to 41% for CPU power and up to
15% for full-system power, or alternatively that it can improve
batch processing throughput by an average of 34%, all while
adhering to QoS constraints for latency-sensitive jobs.

VIII. ACKNOWLEDGMENTS

We thank our anonymous reviewers for their feedback and
suggestions. This research was supported by Google and by the
National Science Foundation under grants CCF-SHF-1302682
and CNS-CSR-1321047.

REFERENCES

[1] B. Aksanli, J. Venkatesh, L. Zhang, and T. Rosing, “Utilizing green
energy prediction to schedule mixed batch and service jobs in data
centers,” ACM SIGOPS Operating Systems Review, vol. 45, no. 3, pp.
53–57, 2012.

[2] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and
V. Vasudevan, “FAWN: a fast array of wimpy nodes,” Commun. ACM,
vol. 54, no. 7, pp. 101–109, Jul. 2011.

[3] L. A. Barroso, J. Dean, and U. Holzle, “Web-search for a planet: The
google cluster architecture,” Micro, IEEE, vol. 23, no. 2, pp. 22–28,
2003.

[4] L. A. Barroso and U. Hölzle, “The case for energy-proportional com-
puting,” Computer, vol. 40, no. 12, pp. 33–37, Dec. 2007.

[5] L. A. Barroso and U. Hölzle, “The datacenter as a computer: An
introduction to the design of warehouse-scale machines,” Synthesis
Lectures on Computer Architecture, vol. 4, no. 1, pp. 1–108, 2009.

[6] L. A. Barroso and P. Ranganathan, “Guest editors’ introduction:
Datacenter-scale computing,” Micro, IEEE, vol. 30, no. 4, pp. 6–7, 2010.

[7] N. Chitlur, G. Srinivasa, S. Hahn, P. K. Gupta, D. Reddy, D. Koufaty,
P. Brett, A. Prabhakaran, L. Zhao, N. Ijih, S. Subhaschandra, S. Grover,
X. Jiang, and R. Iyer, “QuickIA: Exploring heterogeneous architectures
on real prototypes,” in HPCA ’12.

[8] J. Cong and B. Yuan, “Energy-efficient scheduling on heterogeneous
multi-core architectures,” in ISLPED ’12.

[9] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, pp. 74–80, Feb. 2013.

[10] C. Delimitrou and C. Kozyrakis, “Paragon: QoS-Aware Scheduling for
Heterogeneous Datacenters,” in ASPLOS ’13.

[11] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-Efficient and QoS-
Aware Cluster Management,” in ASPLOS’14.

[12] Electronic Educational Devices, “Watts Up PRO,” 2010.
[13] H. Esmaeilzadeh, T. Cao, Y. Xi, S. M. Blackburn, and K. S. McKinley,

“Looking back on the language and hardware revolutions: measured
power, performance, and scaling,” in ASPLOS ’11.

[14] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” in ISCA ’07.

[15] A. Fedorova, J. C. Saez, D. Shelepov, and M. Prieto, “Maximizing power
efficiency with asymmetric multicore systems,” Commun. ACM, vol. 52,
December 2009.

[16] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the
clouds: a study of emerging scale-out workloads on modern hardware,”
in ASPLOS ’12.

[17] E. Frachtenberg, “Holistic datacenter design in the open compute
project,” Computer, vol. 45, no. 7, pp. 83–85, 2012.

[18] G. F. Franklin, D. J. Powell, and A. Emami-Naeini, Feedback Control
of Dynamic Systems, 4th ed. Upper Saddle River, NJ, USA: Prentice
Hall PTR, 2001.

[19] G. F. Franklin, M. L. Workman, and D. Powell, Digital Control
of Dynamic Systems, 3rd ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1997.

[20] Í. Goiri, W. Katsak, K. Le, T. D. Nguyen, and R. Bianchini, “Parasol
and greenswitch: managing datacenters powered by renewable energy,”
in ASPLOS ’13.

[21] P. Greenhalgh, “Big.LITTLE processing with ARM CortexTM-A15 and
Cortex-A7,” White Paper, ARM, 2011.

[22] M. Guevara, B. Lubin, and B. C. Lee, “Navigating heterogeneous
processors with market mechanisms,” in HPCA ’13.

[23] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback
Control of Computing Systems. John Wiley & Sons, 2004.

[24] U. Holzle, “Brawny cores still beat wimpy cores, most of the time,”
IEEE Micro, 2010.

[25] T. Horvath, T. Abdelzaher, K. Skadron, and X. Liu, “Dynamic voltage
scaling in multitier web servers with end-to-end delay control,” IEEE
Trans. Comput., vol. 56, no. 4, pp. 444–458, Apr. 2007.

[26] V. Janapa Reddi, B. C. Lee, T. Chilimbi, and K. Vaid, “Web search
using mobile cores: quantifying and mitigating the price of efficiency,”
in ISCA ’10.

[27] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-Way
Multithreaded Sparc Processor,” IEEE Micro, vol. 25, no. 2, pp. 21–
29, Mar. 2005.

[28] D. Koufaty, D. Reddy, and S. Hahn, “Bias scheduling in heterogeneous
multi-core architectures,” in EuroSys ’10.

[29] C. Kozyrakis, A. Kansal, S. Sankar, and K. Vaid, “Server engineering
insights for large-scale online services,” IEEE Micro, vol. 30, no. 4, pp.
8–19, Jul. 2010.

[30] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,
“Single-isa heterogeneous multi-core architectures: The potential for
processor power reduction,” in MICRO ’03.

[31] M. Laurenzano, Y. Zhang, L. Tang, and J. Mars, “Protean code:
Achieving near-free online code transformations for warehouse scale
computers,” in Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), ser. MICRO-47. New York,
NY, USA: ACM, 2014.

[32] K. Le, R. Bianchini, T. D. Nguyen, O. Bilgir, and M. Martonosi,
“Capping the brown energy consumption of internet services at low
cost,” in International Green Computing Conference, 2010, pp. 3–14.

[33] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and C. Kozyrakis,
“Power management of datacenter workloads using per-core power
gating,” IEEE Comput. Archit. Lett., vol. 8, no. 2, pp. 48–51, Jul. 2009.

[34] S. Li, K. Lim, P. Faraboschi, J. Chang, P. Ranganathan, and N. P. Jouppi,
“System-level integrated server architectures for scale-out datacenters,”
in MICRO ’11.

[35] T. Li, P. Brett, R. C. Knauerhase, D. A. Koufaty, D. Reddy, and S. Hahn,
“Operating system support for overlapping-isa heterogeneous multi-core
architectures,” in HPCA ’10.

[36] K. Lim, D. Meisner, A. G. Saidi, and T. F. Wenisch, “Thin servers with
smart pipes: Designing soc accelerators for memcached.”

[37] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis, “To-
wards energy proportionality for large-scale latency-critical workloads,”
in ISCA ’14.

[38] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J. Pi-
corel, A. Adileh, D. Jevdjic, S. Idgunji, E. Ozer, and B. Falsafi, “Scale-
out processors,” SIGARCH Comput. Archit. News, vol. 40, no. 3, pp.
500–511, Jun. 2012.

[39] C. Lu, Y. Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son, “Feedback
control architecture and design methodology for service delay guarantees
in web servers,” IEEE Trans. Parallel Distrib. Syst., vol. 17, no. 9, pp.
1014–1027, Sep. 2006.

[40] N. Madan, A. Buyuktosunoglu, P. Bose, and M. Annavaram, “A case
for guarded power gating for multicore processors,” in HPCA ’11.

[41] K. T. Malladi, B. C. Lee, F. A. Nothaft, C. Kozyrakis, K. Periyathambi,
and M. Horowitz, “Towards energy-proportional datacenter memory
with mobile dram,” in ISCA ’12.

[42] J. Mars, L. Tang, and R. Hundt, “Whare-map: Heterogeneity in “homo-
geneous” warehouse-scale computers,” in ISCA ’13.

[43] J. Mars, L. Tang, and R. Hundt, “Heterogeneity in “homogeneous”
warehouse-scale computers: A performance opportunity,” Computer
Architecture Letters, vol. 10, no. 2, pp. 29–32, 2011.

[44] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-up:
Increasing utilization in modern warehouse scale computers via
sensible co-locations,” in Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), ser. MICRO-
44. New York, NY, USA: ACM, 2011, pp. 248–259. [Online].
Available: http://doi.acm.org/10.1145/2155620.2155650

[45] J. Mars, L. Tang, K. Skadron, M. L. Soffa, and R. Hundt, “Increasing
utilization in modern warehouse-scale computers using bubble-up,”
IEEE Micro, vol. 32, no. 3, pp. 88–99, May 2012. [Online]. Available:
http://dx.doi.org/10.1109/MM.2012.22

[46] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F.
Wenisch, “Power management of online data-intensive services,” in
ISCA ’11.

[47] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das, “Towards
characterizing cloud backend workloads: insights from google compute
clusters,” SIGMETRICS ’10.

[48] P. Ranganathan, “Recipe for efficiency: principles of power-aware com-
puting,” Communications of the ACM, vol. 53, no. 4, pp. 60–67, 2010.

[49] V. J. Reddi, B. C. Lee, T. Chilimbi, and K. Vaid, “Mobile processors for
energy-efficient web search,” ACM Trans. Comput. Syst., vol. 29, no. 3,
pp. 9:1–9:39, Aug. 2011.

[50] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt, “Google-
wide profiling: A continuous profiling infrastructure for datacenters,”
Micro, IEEE, vol. 30, no. 4, pp. 65–79, 2010.

[51] S. Rivoire, P. Ranganathan, and C. Kozyrakis, “A comparison of high-
level full-system power models,” in HotPower ’08.

[52] J. C. Saez, A. Fedorova, D. Koufaty, and M. Prieto, “Leveraging
Core Specialization via OS Scheduling to Improve Performance on
Asymmetric Multicore Systems,” ACM Trans. Comput. Syst., vol. 30,
no. 2, pp. 6:1–6:38, Apr. 2012.

[53] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: flexible, scalable schedulers for large compute clusters,” in
EuroSys’13.

[54] L. Tang, J. Mars, W. Wang, T. Dey, and M. L. Soffa, “Reqos: Reactive
static/dynamic compilation for qos in warehouse scale computers,” in
Proceedings of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
ser. ASPLOS ’13. New York, NY, USA: ACM, 2013, pp. 89–100.
[Online]. Available: http://doi.acm.org/10.1145/2451116.2451126

[55] L. Tang, J. Mars, X. Zhang, R. Hagmann, R. Hundt, and
E. Tune, “Optimizing google’s warehouse scale computers: The numa
experience,” in Proceedings of the 2013 IEEE 19th International
Symposium on High Performance Computer Architecture (HPCA), ser.
HPCA ’13. Washington, DC, USA: IEEE Computer Society, 2013, pp.
188–197. [Online]. Available: http://dx.doi.org/10.1109/HPCA.2013.
6522318

[56] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments,” in
ICPPW ’10.

[57] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through Performance Impact
Estimation (PIE),” in ISCA ’12.

[58] D. Wong and M. Annavaram, “Knightshift: Scaling the energy propor-
tionality wall through server-level heterogeneity,” in MICRO ’12.

[59] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: Precise
online qos management for increased utilization in warehouse
scale computers,” in Proceedings of the 40th Annual International
Symposium on Computer Architecture (ISCA), ser. ISCA ’13. New
York, NY, USA: ACM, 2013, pp. 607–618. [Online]. Available:
http://doi.acm.org/10.1145/2485922.2485974

[60] Y. Zhai, X. Zhang, S. Eranian, L. Tang, and J. Mars, “Happy:
Hyperthread-aware power profiling dynamically,” in USENIX ATC ’14.

[61] Y. Zhang, M. Laurenzano, J. Mars, and L. Tang, “Smite: Precise
qos prediction on real system smt processors to improve utilization
in warehouse scale computers,” in Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
ser. MICRO-47. New York, NY, USA: ACM, 2014.

