
The Architectural Implications of Autonomous
Driving: Constraints and Acceleration

Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach
Md E. Haque1, Lingjia Tang, Jason Mars

University of Michigan, Ann Arbor
{shihclin,yunqi,hsuch,skachm,mdhaque,lingjia,profmars}@umich.edu

Abstract

Autonomous driving systems have attracted a signiicant
amount of interest recently, and many industry leaders, such
as Google, Uber, Tesla and Mobileye, have invested large
amount of capital and engineering power on developing such
systems. Building autonomous driving systems is particu-
larly challenging due to stringent performance requirements
in terms of both making the safe operational decisions and
inishing processing at real-time. Despite the recent advance-
ments in technology, such systems are still largely under
experimentation and architecting end-to-end autonomous
driving systems remains an open research question.

To investigate this question, we irst present and formalize
the design constraints for building an autonomous driving
system in terms of performance, predictability, storage, ther-
mal and power. We then build an end-to-end autonomous
driving system using state-of-the-art award-winning algo-
rithms to understand the design trade-ofs for building such
systems. In our real-system characterization, we identify
three computational bottlenecks, which conventional multi-
core CPUs are incapable of processing under the identiied
design constraints. To meet these constraints, we acceler-
ate these algorithms using three accelerator platforms in-
cluding GPUs, FPGAs and ASICs, which can reduce the tail
latency of the system by 169×, 10×, and 93× respectively.
With accelerator-based designs, we are able to build an end-
to-end autonomous driving system that meets all the design
constraints, and explore the trade-ofs among performance,
power and the higher accuracy enabled by higher resolution
cameras.

CCS Concepts · Computer systems organization →
Neural networks; Heterogeneous (hybrid) systems;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for proit or commercial advantage and that copies bear
this notice and the full citation on the irst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speciic permission and/or a fee. Request
permissions from permissions@acm.org.

ASPLOS’18, March 24ś28, 2018, Williamsburg, VA, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4911-6/18/03. . . $15.00
htps://doi.org/htps://doi.org/10.1145/3173162.3173191

Keywords Autonomous Driving Systems, Deep Neural Net-
works

1 Introduction

Google, Uber, Tesla, Mobileye and many automotive com-
panies have recently invested signiicantly in the future ap-
plication known as autonomous driving systems. The au-
tonomous driving system allows the vehicle to drive by itself
without requiring help from a human. The vehicle equipped
with autonomous driving capability detects the environment,
locates its position, and operates the vehicle to get to the
speciied destination safely without human input.
Demand of this application continues to grow leading

to ever increasing investment from industry. Intel recently
acquired Mobileye, a leader in computer vision-based au-
tonomous driving technology, for $15.3 billion [66]. Reports
show that by 2035, automobiles with autonomous driving
features are expected to capture 25% of the automotive mar-
ket, which translates to 18 million vehicles [21], and the size
of the autonomous driving vehicle market is expected to leap
to $77 billion by 2035 [21].
Despite the recent advancements in autonomous driving

systems contributed by industry leaders like Google, Tesla
and Mobileye, autonomous driving vehicles are still largely
under experimentation and research. As such, architecting
the right autonomous driving system still largely remains
an open research question.
Architecting autonomous driving systems is particularly

challenging for a number of reasons. These systems must
make the łcorrect” operational decision at all times to avoid
accidents, thereby advanced machine learning, computer
vision and robotic processing algorithms, typically computa-
tionally intensive, are employed to deliver the required high
precision. Despite the large amount of computation, it is crit-
ical for such mission critical system to be able to react to the
traic condition at real-time, which means the processing
always needs to inish at strict deadlines. Furthermore, the
system needs to perform the necessary computation under
certain power budget to avoid negatively impacting the driv-
ing range and fuel eiciency of the vehicle by large amounts.
To address these challenges as a research community,

there are several key questions that need to be answered:

1Haque is currently a Software Engineer at Google.

https://doi.org/https://doi.org/10.1145/3173162.3173191

1. What are the design constraints for building autonomous
driving systems?

2. What are the computational proile and bottlenecks
of a state-of-the-art end-to-end autonomous driving
system?

3. What architecture should we use when building such
systems to meet all the design constraints?

To answer these questions, we irst investigate the design
constraints for autonomous driving systems. We identify six
classes of constraints including performance, predictability,
storage, thermal, power and others, and have arrived at some
unique observations about autonomous driving systems. For
instance, we discover it is critical for the system to be able
to inish the end-to-end processing at a latency less than 100
ms and a frame rate higher than 10 frames per second, to re-
act fast enough to the constantly changing traic condition.
To capture the stringent performance predictability require-
ments of such mission critical real-time system, tail latency
(i.e., high quantiles of the latency distribution) should be used
to quantify the performance of the system. We also ind the
power consumption of such system is heavily magniied (al-
most doubled) by the increased cooling load to remove heat
generated by the computing system to keep the passenger
cabin within a tolerable temperature, making it challenging
to leverage power-hungry computational platforms without
signiicantly degrading the vehicle driving range and fuel
eiciency.

To understand the computational proile of such systems,
we irst need to address the challenge of there being a lack
of publicly available end-to-end experimental frameworks
that are representative of the state-of-the-art autonomous
driving systems, which places a signiicant obstacle for our
community to investigate these systems. Therefore, we build
an end-to-end autonomous driving system based on most re-
cently published system designs from academic research [37]
and industry practitioners [72]. The algorithmic components
we use represent the most up-to-date advancements in rel-
evant ields, as they have won the corresponding machine
learning challenges recently (e.g., YOLO [57] won the multi-
object detection challenge [16]). In this architecture (detailed
in Section 2.3), the video captured by cameras are streamed
into an object detection engine to detect interested objects
and a localization engine to locate the vehicle based on the
nearby landmarks in parallel. The detected object coordi-
nates are then fed into an object tracking engine that tracks
the moving objects to predict their moving trajectories. The
output of the object detection engine and the localization
engine is then fused onto the same 3D coordinate space to
plan out the operational decisions.
With this end-to-end experimental framework, we dis-

cover three computational bottlenecks, namely object detec-
tion, object tracking and localization, account for more than
94% of the computation. These computationally expensive

bottlenecks prevent conventional multicore CPU systems
from meeting the design constraints of such systems. Thus,
we conduct an in-depth investigation to explore the viability
of accelerating these algorithmic components using various
accelerators. Lastly, we provide insights on how future ar-
chitecture designs should evolve for this emerging and fast
growing application. Speciically, we make the following
contributions:

• Identifying Design Constraints –We identify and
present the design constraints of autonomous driv-
ing systems in terms of performance, predictability,
storage, thermal and power. Despite the stringent real-
time performance constraints (i.e., a tail latency lower
than 100 ms at a frame rate higher than 10 frames
per second), the power consumption of such system
is heavily magniied by the increased cooling load to
remove the heat generated by the computing system,
resulting in signiicant impact on the fuel eiciency
and driving range of the vehicle (Section 2).
• Experimental Infrastructure forAutonomousDriv-

ing – To investigate the design of autonomous driving
systems, we build an end-to-end system whose ar-
chitecture aligns with latest industry products. The
models and algorithmic components we employ in
this system are representative of the state-of-the-art
techniques, as they recently won the corresponding
machine learning challenges and awards (Section 3).
• Accelerating Autonomous Driving – We identify
three computational bottlenecks, including object de-
tection, object tracking and localization, in the end-
to-end system that must be accelerated to meet all
the design constraints. To thoroughly investigate the
implications and trade-ofs across devices when ac-
celerating these bottlenecks, we implement them on
three diferent accelerator platforms including GPUs,
FPGAs and ASICs and provide a quantitative analysis
(Section 4).
• In-Depth Exploration ofAcceleration Landscape

–We explore the landscape of acceleration-based au-
tonomous driving design choices across the three accel-
erator platforms and discuss the implication trade-ofs
for future architecture among performance, power and
scalability (Section 5).

In summary, we ind GPU-, FPGA-, ASIC-accelerated au-
tonomous driving systems can signiicantly reduce the pro-
cessing tail latency by factors of 169×, 10×, 93× respectively.
This allows us to realize an end-to-end system that meets
all the design constraints we identify in Section 2.4. We
observe computational platforms with high performance
predictability (e.g., GPUs, FPGAs, ASICs) are critical to meet
the stringent real-time processing requirements of such mis-
sion critical application. However, power-hungry accelerator
platforms like GPUs can signiicantly degrade the vehicle

Table 1. Summary of autonomous driving vehicles under
experimentation in leading industry companies.

Manufacturer Mobileye [47] Tesla [15, 70] Nvidia/Audi [67] Waymo [22, 68, 77]
Automation level 2 level 2 level 3 level 3
Platform SoCs SoCs + GPUs SoCs + GPUs SoCs + GPUs
Sensor camera camera, radar lidar, camera, radar lidar, camera, radar

driving range and fuel eiciency, since the added cooling load
to remove the additional heat generated by the computing
system almost doubles system power consumption.

2 Autonomous Driving

To investigate autonomous driving systems, we irst present
a formal taxonomy of such systems deined at diferent levels
of automation ranging from no automation to full automa-
tion, as well as where the current industry stands based on
this taxonomy.We then introduce the computational pipeline
of the state-of-the-art highly automated autonomous driving
systems. Based on this pipeline, we investigate and formalize
the design constraints of architecting such systems.

2.1 Level of Automation

To facilitate the development of highly autonomous vehicles
(HAVs), the National Highway Traic Safety Authority re-
leased a guideline for autonomous driving systems [75] in
which they referred to the six levels of automation deined
by SAE International [59].

• No Automation (Level 0) – The human driver must
complete all driving tasks even with warnings from
vehicles.
• Driver Assistance (Level 1) – The automated system
shares steering and acceleration/deceleration respon-
sibility with the human driver under limited driving

conditions (e.g., high speed cruising), and the driver
handles the remaining driving tasks (e.g., lane change).
• Partial Automation (Level 2) – The automated sys-
tem fully controls the steering and acceleration/decel-
eration of vehicles under limited driving conditions, and
the human driver performs remaining driving tasks.
• ConditionalAutomation (Level 3) –The automated
system handles all driving tasks under limited driving

conditions, and expects that the human driver will re-
spond to requests to intervene (i.e., resume driving).
• HighAutomation (Level 4) – The automated system
handles all driving tasks under limited driving condi-

tions even if the human driver does not respond to
requests to intervene.
• Full Automation (Level 5) – The automated system
takes full control of all driving tasks under all driving
conditions that can be managed by a human driver.

In summary, level 1 and 2 of automation are still mostly
driving assistance, where the human driver still handles a
substantial portion of the driving tasks at all times under

all conditions. Autonomous driving systems can take full
driving responsibility at level 3-5 of automation under certain
driving conditions, which are typically referred as HAVs. As
they represent the future of autonomous driving systems,
we focus on HAVs at level 3-5 for the rest of the paper.

2.2 Current Industry Status

To understand where current industry stands, we survey the
industry leaders in the level of automation, the computing
platform and sensors they leverage as presented in Table 1.
As shown in the table, even leading industry companies like
Tesla andWaymo can only achieve level 2 or 3 of automation,
where the human driver is still heavily involved in the control
of the vehicle. It demonstrates the challenges in building
autonomous driving vehicles and motivates our research
community to investigate this emerging application.
Looking at the computing platforms and sensors these

industry leaders use, most of them leverage a combination
of SoCs and GPUs to provide the large amount of compu-
tational capacity needed for autonomous driving systems.
Another interesting observation is both Nvidia/Audi and
Waymo, who are able to build experimentation autonomous
driving vehicles at level 3 of automation, use Light Detec-
tion and Ranging (LIDAR) as part of the sensing devices,
which is a remote sensing device used to examine surround-
ings of the vehicle at high precision by sending light beams.
Although the high precision makes LIDAR a great it as a
sensing device for autonomous driving systems, the extreme
high cost of LIDAR has been one of the primary reasons that
prevent such systems from being commercially available on
the market. Commercially available LIDAR devices are as
expensive as $75,000 USD [76], which is much higher than
the cost of the vehicle itself, even for some luxury cars. As
a result, the industry has been trying to move away from
LIDAR devices, and build vision-based autonomous driv-
ing systems instead, using only cameras and radars that are
much cheaper for sensing the surroundings. For instance,
companies like Mobileye [48, 50] and Tesla [69] have re-
cently announced their plan for focusing on vision-based
autonomous driving systems which are composed of mainly
cameras and radars as sensing devices. Therefore, we focus
on vision-based autonomous driving systems in this paper.

2.3 Autonomous Driving Pipeline

The task of autonomous driving is to operate the vehicle to
reach a given destination, with the data captured on vari-
ous real-time sensors such as video cameras, laser scanners,
and milliwave radars. The autonomous driving system then
performs the necessary processing to recognize the driving
environments and makes operating decisions. Such system
is often composed of three major components: scene recogni-
tion for localizing the vehicle at decimeter-level and tracking
nearby objects, path planning for generating the future paths,
and vehicle control for physically operating the vehicle to

Fusion

Info

Object

Movement
Object

Coordinate

Detector Tracker

Vehicle

Location

Fusion

Image

Localizer

Mission Planner

Motion Planner

Accelerate?

Steering?

Action

Planning

Information

(1a)

(1b)

(1c) (2)

(2)

(3)

(4)

(5)

Figure 1. Overview of a state-of-the-art autonomous driving system, which is designed based on recent publications [37]
and speciications released by industry companies [48, 72]. The video captured by cameras are streamed into both the object
detection engine to detect objects (1a) and the localization engine to locate the vehicle (1b) in parallel. The detected objects
then are passed to the object tracking engine to track moving objects (1c). The vehicle location and the tracked objects are
projected into the same 3D coordinate space by the fusion engine (2), which will be consumed by the motion planner (3) to
make operational decisions (5). The mission planner is only invoked when the vehicle deviates from the original routing plan
generated by the navigation services like Google Maps (4).

follow the planned paths [37]. These algorithm components
are the basis of most modern autonomous driving systems,
which has been conirmed by the self-driving car Udacity
built [72], and also aligns with how Mobileye designs their
autonomous driving systems [48]. A detailed diagram of
these components is presented in Figure 1.

The captured sensing data is irst fed to an object detector
(step 1a in Figure 1) and a localizer (step 1b in Figure 1) in
parallel. The object detector detects the objects of interest
around the vehicle, such as other vehicles, pedestrians, and
traic signals. The detected objects are then passed to an
object tracker (step 1c in Figure 1) to associate the detected
objects with their movements in the past, to predict the trajec-
tories of moving objects. In parallel, the localizer determines
the location of the vehicle at high precision. Subsequently,
the object movement information from object tracker and
the vehicle location information from localizer is combined
and projected onto the same 3D coordinate space by a sensor
fusion engine (step 2 in Figure 1).

The fused information about the vehicle location and mov-
ing objects is then passed to the motion planning engine to
assign path trajectories (step 3 in Figure 1), such as lane
change and setting the vehicle’s velocity. The mission plan-
ning engine calculates the detailed operating motions to
realize the planned paths and determine the routing path
from source to destination (step 4 in Figure 1). The vehicle
control engine simply follows the planned paths and trajec-
tories by operating the vehicle (step 5 in Figure 1).

2.4 Design Constraints

Despite the extremely detailed regulations on conventional
automobiles (e.g., crash test, fuel economy, vehicle inspec-
tion), regulatory authorities have only recently started form-
ing these regulations regarding autonomous driving vehicles.
In the Federal Automated Vehicle Policies published by the

U.S. Department of Transportation [75], it was only men-
tioned that łsigniicant emphasis should be placed on soft-
ware development, veriication and validation” without any
speciic details. Therefore, many of the design constraints we
discuss in this section are derived from published materials
by industry practitioners like Toyota [34], Udacity [72] and
Mobileye [48].

2.4.1 Performance Constraints

To avoid car accidents, the autonomous driving system needs
to be able to łunderstand” the real-time traic condition and
react to it fast enough. While autonomous vehicles have the
potential to reduce traic casualties, the actual performance
requirement for autonomous driving system is still largely
undeined. According to prior work in driver-assistance sys-
tems [51], the reaction time of an autonomous driving system
is determined by two factors.

• Frame rate: The frame rate determines how fast the
real-time sensor data can be fed into the process en-
gine.
• Processing latency: The processing latency of recog-
nizing scenes and making operational decisions deter-
mines how fast the system can react to the captured
sensor data.

Human drivers take varying amount of time to respond based
on the level of expectation and action chosen. For example,
human drivers take 600 ms to react when they are expecting
a possible interruption and 850 ms otherwise [33]. A typi-
cal driver takes 0.96 s to release accelerator, 2.2 s to reach
maximum breaking, and 1.64 s to begin steering to avoid
an accident [43]. The fastest possible action by a human
driver takes 100ś150 ms [54, 71]. To provide better safety, au-
tonomous driving systems should be able to react faster than
human drivers, which suggests the latency for processing
traic condition should be within 100 ms. This aligns with

the industry standards recently published by Mobileye [62]
and the design speciications from Udacity [72].
In addition to processing latency, autonomous driving

systems also need to frequently update their łunderstanding”
to keep up with the continuously changing real-time traic
condition. In other words, the frame rate needs to be high,
in case the real-time traic condition changes drastically
between two neighboring frames. To react quickly to the
constantly changing traic condition, the system should be
able to react faster than human reaction time, which suggests
a frequency of once every 100 ms. This also aligns with the
frame rate of the collision prevention assistant systems built
by Mobileye [49].

Performance Constraints:Autonomous driving system should
be able to process current traic conditions within a latency
of 100 ms at a frequency of at least once every 100 ms.

2.4.2 Predictability Constraints

Autonomous driving is one of the mission critical applica-
tions that must be performed at real-time. What this means
is the processing fails if not completed within a speciic dead-
line, thereby the performance predictability is critical. Not
being able to process in real-time can put the passengers in
danger, and sometimes result in fatal accidents. Therefore,
the performance of autonomous driving systems needs to
be extremely predictable for them to be widely adopted. The
predictability is deined as both the temporal aspects (i.e.,
meeting the speciied timing deadline) and the functional
aspects (i.e., making the correct operational decisions). From
an architect’s point of view, we focus on the predictability
of the temporal aspects.

Speciically, the predictability of the processing latency is
critical for the autonomous driving system to quickly react
to the real-time traic condition reliably. To capture the non-
determinism of large-scale distributed systems, tail latency,
deined as the high quantiles of the latency distribution (e.g.,
95th-, 99th- percentile latency), is often used to evaluate
the performance of such systems instead of mean latency.
As we will show in Section 3.2, the localization algorithm
has large performance variability, which is challenging for
the autonomous driving system to react to the real-time
traic. As a result, tail latency, high quantiles like 99.99th-
percentile or even worst case latency, should be used to eval-
uate the performance of such systems to relect the stringent
predictability requirements. We will also empirically demon-
strate why tail latency should be used in Section 5.1.2.
Predictability Constraints: Due to the large performance

variability of autonomous driving systems, tail latency (e.g.,
99th-, 99.99th- percentile latency) should be used as the met-
ric to evaluate the performance, in order to capture the strin-
gent predictability requirement.

2.4.3 Storage Constraints

While GPS technology has been commonly adopted to iden-
tify the vehicle location for navigation systems, it does not
provide the necessary level of precision (e.g., precision at
decimeter-level is needed to keep the vehicle staying in cer-
tain lanes [40]) and the spacial accessibility [5] to localize the
vehicle (step 1b in Figure 1) for autonomous driving tasks.
Therefore, prior map-based localization has beenwidely used
to provide localization capability at centimeter-level preci-
sion [44, 53, 64, 78, 79, 83], where the surrounding view is
transformed into feature descriptions to map the feature
points stored in the prior map to identify the location of
the vehicle. However, it is infeasible to transmit the prior
map from the cloud all the time, because the vehicle does
not always have access to the Internet and the vehicle still
needs to perform the necessary autonomous driving tasks
even under limited accessibility. Therefore, the prior map
needs to be stored on the autonomous driving vehicle.

However, prior maps of large environments (e.g., an entire
country) consume signiicant amount of storage space. For
example, a prior map of the entire United States takes 41 TB
of storage space on an autonomous driving system [74].

Storage Constraints: Tens of TBs of storage space is needed
to store the prior maps in large environments required by
autonomous driving systems to localize the vehicle (e.g., 41
TB for an entire map of the U.S.).

2.4.4 Thermal Constraints

There are two aspects of thermal constraints in autonomous
driving systems: 1) the temperature of the space to hold the
computing system needs to be within the operating range
the system can operate under; 2) the heat generated by the
computing system should have relatively small impact on
the thermal proile of the vehicle (e.g., not heat up the engine,
which can potentially afect the reliability of the vehicle).

There are typically two temperature zones in modern au-
tonomous driving vehicles: in the climate controlled passen-
ger cabin or outside of [34]. Outside the passenger cabin, the
operating temperature can get up to +105°C ambient [34],
which is higher than most general-purpose computer chips
could safely operate under (e.g., a typical Intel processor can
only operate at temperature lower than 75°C [29]). Therefore,
the autonomous driving system should be placed inside the
climate controlled passenger cabin to avoid having to build
climate control functionality for additional zones.

However, the passengers may no longer be able to tolerate
the increased temperature when the computing system is
placed inside the passenger cabin without additional cooling
infrastructure. For instance, a computing system that con-
sumes 1kW power (e.g., 1 CPU and 3 GPUs operating at full
utilization) will raise the temperature by 10°C in a minute if
no additional cooling is added in the passenger cabin [18].
In conclusion, additional air conditioning load needs to be

added to remove heat generated by the autonomous driving
systems to keep the passenger cabin temperature tolerable.

Thermal Constraints: The computing system of autonomous
driving vehicle needs to be put into the climate controlled
passenger cabin to be able to operate safely, which means
additional cooling capacity needs to be added to remove
the additional heat generated by the computing system to
maintain a tolerable temperature in the passenger cabin.

2.4.5 Power Constraints

In gasoline powered cars, the electrical system is typically on
the order of 1-2 kW provided by the car’s alternator [46, 55],
which could be increased at the cost of reduction in fuel
eiciency of the vehicle [60]. The exact reduction varies de-
pending on the fuel eiciency of the car, but a rule of thumb
for gas powered cars is that the miles per gallon (MPG) rat-
ing will be reduced by one for every additional 400 W of
power consumption [17] (e.g., an additional 400 W power
consumption translates to a 3.23% reduction in MPG for a
2017 Audi A4 sedan with 31 MPG originally [4]). Similarly,
the additional power consumption will reduce the total driv-
ing range of electric vehicles (EVs) [69] due to the limited
battery capacity.

The total power consumption of the autonomous driving
system includes the consumption of the computing system,
storage overhead (Section 2.4.3) and cooling overhead (Sec-
tion 2.4.4). While the power consumption of the computing
system heavily depends on the computing platform (e.g.,
CPUs, GPUs), a typical storage system consumes around 8
W to store every 3 TB data [61]. To remove the additional
heat generated by the system, a typical automobile air condi-
tioner consumes around 77% of the cooling load to dissipate
the heat (i.e., a coeicient of performance of 1.3, representing
the ratio of useful cooling provided to work required [35]).
That is to say, a 100 W system imposes 77 W cooling over-
head to remove the additional heat generated by the system.
In Figure 2, we analyze the reduction in driving range

of a Chevy Bolt [10] as additional power needs are placed
on an electric vehicle. The irst three sets of bars on the
left represent the power consumption and driving range
reduction contributed by the computing engine only, and
the ones on the right show the corresponding metrics for
the entire system in aggregate (i.e., including storage and
cooling overhead). Surprisingly, the computing engine only
contributes about half of the power consumption and the
driving range reduction, where the storage engine and es-
pecially the cooling overhead almost double the impact. For
example, a computing engine equipped with 1 CPU and 3
GPUs operating at full utilization alone only reduces the
driving range by 6%, while the entire system experiences
almost doubled reduction (i.e., 11.5%).

Power Constraints: The power consumption of autonomous
driving system consists of the consumption of the computing
engines and the storage engine, and is heavily magniied by

CPU+
FPGA

CPU+
GPU

CPU+
3GPUs

CPU+
FPGA

CPU+
GPU

CPU+
3GPUs

0

500

1000

1500

2000

2500

P
o
w

e
r

(W
)

Computing engine alone Entire system in aggregate

Power

0.0

2.5

5.0

7.5

10.0

12.5

15.0

D
ri

v
in

g
 R

a
n

g
e
 R

e
d

u
c
it

o
n

 (
%

)

Driving Range Reduction

Figure 2. Driving distance per charge reduction contributed
by the computing engine alone (on left) and the entire sys-
tem in aggregate (on right) with respect to the additional
power consumption generated by autonomous driving sys-
tems. The power consumption is heavily magniied by the
storage engine and especially the cooling overhead resulting
in driving range reductions as much as 11.5%.
the required cooling capacity to remove the additional heat.
Having a power-hungry system can signiicantly degrade
the vehicle fuel eiciency (e.g., as much as 11.5%).

2.4.6 Other Constraints

Additionally, there are also other constraints that we are not
focusing on in this paper. Any equipment used in the car
should be able to sustain the impulse and vibration of the
vehicles. Sudden impulses can range somewhere between
50 g to 500 g (g is used to measure impulse and stands for
gravitational force) and vibrations can be up to 15 g and
100ś2000 Hz [34]. Hardware reliability is also a constraint in
real-time systems, where airplanes typically employ triple-
modular-redundancy to provide the safety guarantee [81].
However, autonomous driving vehicles experience much
less environment variability (e.g., temperature, atmospheric
pressure) than airplanes, which makes it less likely for rare
events like radiation-induced soft errors to occur.

3 End-to-End System

Due to the lack of a publicly available experimental frame-
work, we build an end-to-end workload to investigate the
architecture implications of autonomous driving vehicles. In
this section, we detail the state-of-the-art algorithmic com-
ponents that constitute this end-to-end autonomous driving
system and the design decisions in choosing these algorith-
mic components. We then characterize the end-to-end sys-
tem to understand its computational proile and the potential
bottlenecks for meeting all the design constraints.

3.1 Algorithmic Components

To build a representative end-to-end system for the state-
of-the-art autonomous driving system, we select the best
publicly available algorithms from the corresponding ma-
chine learning benchmark suites (e.g., VOT benchmark [39]
for object tracking tasks).

NN

Current Image (x0, y0, c0)Grid Cells (x1, y1, c1)

(x3, y3, c3)(x2, y2, c2)

Figure 3. Overview of the object detection engine (DET). It
partitions the input image into sub-regions and predicts the
coordinates of detected objects and the conidence for each
sub-region using Deep Neural Networks (DNNs).

Previous Image: tn-1

Current Image: tn
Region

NN

Target Position

Crop

Crop

Target

Figure 4. Overview of the object tracking engine (TRA). It
crops the next image into a search region and the previous
image into the tracking target only based on previous results.
It then uses Deep Neural Networks (DNNs) to locate the
target object in the search region.

3.1.1 Object Detection

For object detection (DET), we use YOLO [57], a DNN-based
detection algorithm, which outperforms all the other multi-
ple object detection algorithms in both accuracy and speed
on VOC benchmark suite [16]. Figure 3 presents an overview
of the algorithm. It irst partitions the image into sub-regions
and predicts the coordinates of detected objects and the coni-
dence for each region through fully convolutional networks.
A threshold is then used to ilter out the objects detected
with lower probabilities. In the output. we focus on four
categories that we care the most in autonomous driving,
including vehicles, bicycles, traic signs and pedestrians.

3.1.2 Object Tracking

For object tracking (TRA), we use GOTURN [26], a DNN-
based single object tracking algorithm, which outperforms
most state-of-the-art trackers in speed and accuracy in the
VOT object tracking benchmark [39]. As shown in Figure 4, it
crops the current image into a search region and the previous
image into the tracking target only based on the previous
result. Both the search region and the target are then fed as
inputs to the neural networks, which generates the bounding
box of the target to be tracked in the current image.

A pool of trackers is launched initially to wait for incom-
ing tracking requests to avoid the initialization overhead.
To record the number of objects tracked, we implement a
tracked object table to store the objects that are being tracked

Image Map Update

Loop Closing

Local Mapping

ORB Extractor

rBRIEF Descriptor

oFAST Feature Selector

Relocalization

Pose Prediction
(Motion Model)

or

Figure 5. Overview of the localization engine (LOC). The
algorithm takes images as input and extracts interesting
features such as landmarks, and then generates a descriptor
for each of the extracted features. The feature descriptors
are consumed to locate the vehicle and predict vehicle poses.

currently. A threshold is set to determine whether an object
is passing or leaving if it does not appear in ten consecutive
images. We remove it from the tracked object table and set
the tracker idle to wait for more incoming tracking requests.

3.1.3 Localization

For localization (LOC), we use ORB-SLAM [52], which has
been ranked top of the available open source algorithms for
localizing the vehicle on the KITTI datasets [20], as well as
on the TUM benchmark suite [65]. Besides the high accu-
racy, the algorithm is also capable of localizing the vehicle
regardless of viewpoints, which makes it a great it for au-
tonomous driving systems. Figure 5 presents the details of
the algorithm. The incoming video stream is fed into the
ORB extractor to detect feature points using oFAST algo-
rithm. The rBRIEF algorithm is then invoked to generate
descriptions of the extracted feature points.
ORB-SLAM then attempts to match the current descrip-

tions with the prior map database (as mentioned in Sec-
tion 2.4.3) to localize the vehicle position. It uses a constant
motion model to identify the location if the matching suc-
ceeds, otherwise it relocalizes the position by using a wider
search in the map around the location identiied last time.

In addition, the algorithm needs to update the map in case
the current surroundings are diferent from the prior map
(e.g., the map is built under diferent weather conditions).
Lastly, loop closing is executed periodically to detect the
potential trajectory loop when the vehicle is moving in order
to calibrate the vehicle position based on the map database.

3.1.4 Fusion

The fusion engine (FUSION) retrieves the coordinates of the
objects being tracked by the trackers, and combines with the
current vehicle location provided by the localization engine.
The combined information is transformed into the same 3D
coordinate space, and sent to the motion planning engine to
make vehicle operation decisions.

3.1.5 Motion Planning

For motion planning (MOTPLAN), we use the algorithms
in the Autoware, which is a recently published open-source
framework [37]. It leverages a graph-search based approach
to ind the minimum-cost path in space lattices when the
vehicle is in an large opening area like parking lot or rural

DET TRA LOC FUSION MOTPLAN
10

-1

10
0

10
1

10
2

10
3

10
4

L
a
te

n
c
y
 (

m
s
)

7734.4

1334.0

294.2

0.1

0.5

Mean

P99

P99.99

Figure 6. Latency of each algorithmic component on a mul-
ticore CPUs system in the end-to-end autonomous driving
system. The latency contributed by each of object detection
engine (DET), object tracking engine (TRA), and localization
engine (LOC) has already exceeded the latency requirement
of the end-to-end system. These three components dominate
the end-to-end latency, and thereby are the computational
bottlenecks that prevent us from meeting design constraints.

area [56]. When the vehicle is in structured areas (e.g., down-
town area in cities), it uses conformal lattices with spatial
and temporal information to adapt the motion plan to the
environment [45, 73].

3.1.6 Mission Planning

For mission planning (MISPLAN), we also adopt the imple-
mentation from the state-of-the-art Autoware framework [37].
The policy is a rule-based approach which takes the traic
rules and the driving area condition to determine the rout-
ing path trajectory, which aligns with what industry leader
Mobileye has been using [62]. The algorithm operates the
vehicle to follow the route generated by navigation systems
such as Google Maps. It is only executed once unless the
vehicle deviates from planned routes.

3.2 System Characterization

To understand the computational proile and identify the po-
tential bottlenecks in autonomous driving systems, we char-
acterize our system using representative KITTI dataset [20]
on an Intel server compiled with Intel Math Kernel Library
(MKL), and the hardware speciications are listed in Table 2.

Figure 6 shows the measured mean, 99th- and 99.99th-
percentile latency for each of the algorithmic components.
Mission Planning (MISPLAN) is not included because it is
only invoked once at the beginning to plan the route and will
not be executed again unless the vehicle deviates from the
routing path. As shown in the igure, the latency contributed
by each of DET, TRA, and LOC individually has already ex-
ceeded the end-to-end system latency constraints at 100 ms,
and these three components dominate the system latency.
Therefore, we conclude DET, TRA and LOC as the computa-
tional bottlenecks of our autonomous driving system, and
we will focus on them for the rest of the paper.

We then characterize DET, TRA and LOC in details to
investigate where they spend most of their computing cy-
cles. Figure 7 shows the cycle breakdown of each algorithmic

99.4%

0.6%

DET

DNN

Others

99.0%

1.0%

TRA

DNN

Others

85.9%

14.1%

LOC

FE

Others

Figure 7. Cycle breakdown of the object detection (DET),
object tracking (TRA) and localization (LOC) engines. The
Deep Neural Networks (DNNs) portion in DET and TRA,
and the Feature Extraction (FE) portion in LOC account for
more than 94% of the execution in aggregation, which makes
them ideal candidates for acceleration.

component. From the igure, we can easily identify that Deep
Neural Networks (DNNs) is the most computational inten-
sive portion in DET and TRA, as they consume 99.4% and
99.0% of the execution time respectively. Unlike the other two
DNN-based algorithms, Feature Extraction (FE) consumes
more than 85% of the execution time in LOC. These large
fractions indicate the DNN portion in DET and TRA, and
the FE portion in LOC are good candidates for acceleration
in order to meet the strict real-time processing performance
constraints for autonomous driving systems.

4 Accelerating Autonomous Driving

As demonstrated in Section 3.2, conventional multicore CPU
systems are not suitable to meet all the design constraints,
particularly the real-time processing requirement. Therefore,
we port the critical algorithmic components to alternative
hardware acceleration platforms, and investigate the viabil-
ity of accelerator-based designs. In this section, we detail our
design and implementation on these accelerator platforms,
and evaluate their performance in regards to the design con-
straints of autonomous driving systems.

4.1 Accelerator Platforms

We focus on three diferent state-of-the-art computing plat-
forms including GPUs, FPGAs and ASICs, and use multicore
CPUs as our baseline. The detailed speciications of the hard-
ware are listed in Table 2. The multicore CPU platform we
use is a server-grade dual-socket machine with 8 cores on
each socket, which represents a more conventional comput-
ing system design. The GPU accelerator we study is a latest
Nvidia Titan X GPU with Pascal microarchitecture with 12
GB on-board memory, which ofers powerful computing ca-
pability with 3584 cores. For FPGA platform, we employ an
Altera Stratix V development board equipped with 256 Digi-
tal Signal Processors (DSPs) and large reconigurable fabric.
Lastly, we explore ASIC designs using prior work built on

Table 2. Computing platform speciications. *: DSP (Digital Signal Processor)

CPU GPU FPGA ASIC (CNN) ASIC (FC) ASIC (LOC)
Model Intel Xeon E5-2630 v3 NVIDIA TitanX (Pascal) Altera Stratix V TSMC 65 nm TSMC 45 nm ARM 45 nm

Frequency 3.20 GHz 1.4 GHz 800 MHz 200 MHz 800 MHz 4 GHz
Cores 16 3584 256* N/A N/A N/A
Memory 128 GB 12 GB 2 GB 181.5 KB N/A N/A

Memory BW 59.0 GB/s 480.0 GB/s 6.4 GB/s N/A N/A N/A

Memory
Ctrl

WeightBuffer

InputBuffer

OutputBuffer

…

PE

PE

PE

HdrDc_unit

PE

Image

Predict

Figure 8. Diagram of our DNNs implementation on FPGAs.
The limited on-chip memory on FPGAs is not suicient to
hold all the network architecture conigurations, so the net-
works are executed layer by layer. For each layer, thememory
controller initiates the data transfer and the layer deinition
is used by the header decoder unit (HdrDc_unit) to conigure
the layer. Processing Elements (PEs) consumes data in the
WeightBufer and InputBufer to compute the output and
store it to the OutputBufer. To hide the data transfer latency,
we implement double bufering for all bufers.

TSMC 65nm and 45nm technology [9, 23], and also build our
own implementation using ARM 45nm technology.

4.2 Porting Methodology

4.2.1 GPU Implementation

To port the three bottleneck algorithmic components (i.e.,
DET, TRA and LOC) to GPUs, we leverage highly optimized
machine learning software libraries. In particular, we im-
plement the YOLO [57] object detection algorithm using
the cuDNN library provide by Nvidia [11]. We port GO-
TURN [26] object tracking algorithm toGPUs using Cafe [32],
which again allows us to beneit from the highly optimized
cuDNN library [11]. The ORB-SLAM [52] algorithm used for
localization is ported to GPUs with OpenCV library [6].

4.2.2 FPGA Implementation

To port the three bottleneck algorithmic components to
FPGAs, we focus on the most time-consuming algorithms,
namely DNN and Feature Extraction (FE), which account for
almost 95% of the total execution cycles. We build our own
optimized implementations on an Altera Stratix V platform
and detail our implementation of these two algorithms in
the following sections.

DNNs on FPGAs Despite the high memory bandwidth and
large external memory, the Altera Stratix V platform has
limited on-chip memory which is insuicient to hold all the
neural network architecture conigurations (i.e., the network
topology and weights of the neurons) and the intermediate
results, because the advanced state-of-the-art DNNs we use
have complex and deep network architectures.
An overview of our design is presented in Figure 8. Our

implementation is capable of executing all the types of layers
used in DET and TRA, including convolutional layers, pool-
ing layers, ReLu layers and fully connected layers. The imple-
mentation is composed of four major components: memory
controller, bufers, header decoder unit (HdrDc_unit) and the
processing elements (PEs). The memory controller irst initi-
ates the data transfer between the host device and the FPGA
accelerator, and the layer deinition (i.e., layer type, weights)
is fed to the header decoder unit (HdrDc_unit) to conigure
the layer. Each bufer stores the corresponding neural net-
work weights, input values, and internal temporary variables
until the execution of the layer has been completed. Each
PE, primarily consists of multiply-accumulate (MAC) units
instantiated by the digital processing processors (DSPs) on
the fabric, then performs the necessary computation on the
data stored in the WeightBufer and InputBufer and writes
the output to the OutputBufer. To hide the data transfer-
ring latency, we implement double bufering for all bufers
to prefetch the needed data in advance while executing the
current layer. Overall, we are able to achieve an utilization
higher than 80% on the available adaptive logic modules
(ALMs) and DSPs.

FE on FPGAs Feature extraction (FE) dominates the compu-
tation time in LOC, so we focus on porting FE when porting
to FPGAs. There are two major components in the algorithm
ORB we use: oFAST that extracts the feature points and
rBRIEF that computes a descriptor for each feature point. An
overview of our design is summarized in Figure 9.

For oFAST, we implement an image bufer (ImgBufer) and
a feature point bufer (FtrPntBufer) using shift register, and
the mask window is assigned to the corresponding register.
As the input data streaming into the bufer, they are iltered
by the mask window so the feature detector only receive
the data it needs. Orient_unit is implemented with an atan2

Lookup Table (LUT), to avoid the extensive use of multipliers
and dividers of computing atan2 naively.

For rBRIEF, we store the pattern information in the pattern
LUT on-chip. Rotate_unit is implemented to rotate to the

Image

ImgBuffer

Feature
Detector

Orient_unit

FtrPntBuffer

NMS_unit

MaskWdw OrtWdw

(x
 , y

) &
 T

h
e

ta

Pattern LUT
(256 x 4)

Rotate_unit

Rotate_unit

BinTest_unit

DscpBuffer

Descriptor

oFAST

rBRIEF

Memory

Figure 9. Diagram of our implementation of Feature Extrac-
tion (FE) on FPGAs. As the input images streaming into the
image bufer (ImgBufer), they are iltered by the mask win-
dow (MaskWdw). The feature detector extracts the features
of interest and store them into the feature point bufer (FtrP-
ntBufer). It is then consumed by the rotate_unit to rotate
the corresponding coordinates, and the generated feature
descriptors are stored into the descriptor bufer (DscpBufer).
To optimize the performance of our design, we implement
all the complex trigonometric functions with Lookup Tables
(LUTs) to avoid the extensive use of multipliers and dividers,
which reduces the latency by a factor of 1.5×.

corresponding coordinates. Similarly to how we implement
atan2 for oFAST, we implement sin and cos functions using
LUTs to avoid the extensive use of multipliers and dividers.
Due to the limited on-chip memory available, we execute one
binary test at a time and store the result into the descriptor
bufer (DscpBufer) iteratively. As a result, 256 iterations are
required to complete one feature point description. However,
because of the simplicity of this design, we can achieve high
clock rate and thereby low latency. By synthesizing on real
systems, we demonstrate our FE implementation can execute
at a frequency of 250MHz on the Stratix V development
board. By implementing complex trigonometric functions
with LUTs, we improve the performance of FE by a factor of
1.5×.

4.2.3 ASIC Implementation

We employ previously published ASIC implementations for
DNNs [9, 23]. Due to the limited published ASIC implemen-
tation of feature extraction (FE), we implement our FE ASIC
design and synthesize it with modern technology.
We implement FE ASIC following similar design as our

FPGA implementation described in Figure 9 in Verilog and
synthesize it using ARM Artisam IBM SOI 45 nm library. We
verify the result and evaluate the design with post-synthesis
simulation. Table 3 shows the details of of FE ASIC implemen-
tation, where we are able to achieve a clock frequency as high
as 4 GHz. This is largely due to the simplicity of our design, as

Table 3. Feature Extraction (FE) ASIC speciications.

Speciication
Technology ARM Artisam IBM SOI 45 nm

Area 6539.9 um2

Clock Rate 4 GHz (0.25 ns/cycle)
Power 21.97 mW

well as the optimized design with re-timing pipeline. Despite
the more cycles needed for the entire pipeline, we achieve
better performance comparing to more complex implemen-
tations we previously experimented with. Additionally, we
are able to achieve a 4× reduction in latency by replacing
complex trigonometric function computations with LUTs.

5 Evaluation

In this section, we conduct thorough evaluations of various
acceleration platforms to explore the design landscape. We
focus on the three computational bottlenecks identiied in
Section 3.2 as they constitute more than 94% of the end-to-
end execution. In particular, we would like to answer the
following questions in this section:

• How much speedup can these accelerators achieve for
autonomous driving (Section 5.1)?
• Can accelerator-based autonomous driving systems
meet the performance and predictability constraints
(Section 5.2)?
• How does the power consumption of accelerator-based
autonomous driving systems afect the vehicle (Sec-
tion 5.3)?
• How scalable are such systems regarding the growing
camera resolutions (Section 5.4)?

5.1 Acceleration Results

Figure 10 presents the acceleration results we are able to
achieve across mean latency, 99.99th-percentile latency and
the measured power consumption on the four computing
platforms we investigate. We measure the performance and
power on real systems for CPUs, GPUs, and FPGAs using
Watts Up power meter [28]. For ASICs, we reference prior
work [9, 23] for performance and power measurements for
the two DNN-based algorithms object detection (DET) and
object tracking (TRA), and extrapolate them based on the
amount of processing units needed. For our own ASIC im-
plementation of the feature extraction (FEs) algorithm, we
use the power estimated in the post-synthesis result and
simulate the performance with our post-synthesis module.

5.1.1 Mean Latency

As shown in Figure 10a, it is impractical to run either DET
or TRA on the multicore CPU systems, as the latency of
each individual component is already signiicantly higher
than the end-to-end system latency constraints (i.e., 100
ms). This is because both of these components are using
DNN-based algorithms, which demands large amount of
computing capacity that conventional multicore CPUs does

DET TRA LOC
10

0

10
1

10
2

10
3

10
4

L
a
te

n
c
y
 (

m
s
)

7150.0

799.0

40.8

11.2
5.5

20.3

369.6
536.0

27.1

95.9

1.8

10.1

CPU

GPU

FPGA

ASIC

(a) Mean Latency Across Platforms

DET TRA LOC
10

0

10
1

10
2

10
3

10
4

L
a
te

n
c
y
 (

m
s
)

7734.4

1334.0

294.2

14.3
6.4

54.0

369.6
536.0

27.1

95.9

1.8

10.1

CPU

GPU

FPGA

ASIC

(b) 99.99th-Percentile Latency Across Platforms

DET TRA LOC
0

20

40

60

80

100

120

P
o
w

e
r
 (

W
)

51.2

106.9

53.854.0 55.0 53.0

21.5 22.7 19.0

7.9 9.3
0.1

CPU

GPU

FPGA

ASIC

(c) Power Consumption Across Platforms

Figure 10. Acceleration results across various accelerator platforms. The latency of running DET or TRA alone on CPUs or
FPGAs has already exceeded the end-to-end latency constraints, which suggests they are not viable candidates for running the
complex DNN-based DET and TRA algorithms that demand large amount of computational resources.

7.5
0

100

200

300

L
a
te

n
c
y
 (

m
s
)

CPU GPU FPGA ASIC

DET

TRA

LOC

7.9s 9.1s

100ms processing time

Mean

99.99th-Percentile

Figure 11. Themean and 99.99th-percentile latency of running diferent algorithmic components across diferent conigurations
denoted on x-axis. For each coniguration, the color of each grid represents the computing platform each algorithm is running
on (e.g., a red dotted grid represents running LOC on ASICs). There are several conigurations that meet the performance
constraints at tail latency of 100 ms, which means accelerator-based designs are viable for autonomous driving systems.

not ofer. On the contrary, GPUs provide signiicantly lower
mean latency across all three workloads beneiting from
the massive parallel processing power provided by the large
number of processors. Although FPGAs achieve signiicant
latency reduction comparing to CPUs, their mean latency for
DET (i.e., 369.6 ms) and TRA (i.e., 536.0 ms) are still too high
to meet the latency constraints at 100 ms. This is largely due
to the limited number of DSPs available on the fabric. To
support these complex DNN-based algorithms, large amount
of DSPs on FPGAs are needed to provide signiicant compute
power, which can be achieved by much advanced FPGAs
(e.g., Xilinx VC709 FPGA board [82]). As we expected, ASICs
can achieve signiicant latency reduction, where the mean
latency for executing TRA is as low as 1.8 ms. Note the reason
why DET runs slower on ASICs than GPUs is because of the
limited clock frequency at 200 MHz this particular design
can operate at, which does not preclude similar designs with
high clock frequencies to outperform GPUs.
Finding 1. Multicore CPUs are not viable candidates for

running object detection (DET) and object tracking (TRA),

which are composed of complex DNN-based algorithms that

demand large amount of computational resources. The lim-

ited number of DSPs becomes the main bottleneck preventing

FPGAs from meeting the performance constraints.

5.1.2 Tail Latency

Figure 10b presents the 99.99th-percentile latency across four
platforms. As we can see from the igure, although multicore
CPUs can execute the localization algorithm within the per-
formance constraints on average (i.e., mean latency), they

sufer from high tail latency across all three workloads. This
empirically demonstrated our observation in Section 2.4.2
that due to its large performance variability, tail latency
should be used to evaluate the performance of autonomous
driving systems to meet the performance predictability con-
straints. The other computing platforms do not experience
any signiicant increase frommean latency to the tail latency,
which is highly preferable for such mission-critical real-time
applications.
Finding 2. Due to the large performance variability of lo-

calization algorithm, tail latency should be used to evaluate

the performance of autonomous driving systems to meet the

real-time constraints, whereas conventional metrics like mean

latency can easily cause misleading conclusions.

5.1.3 Power Consumption

We present the power consumption across 4 platforms for
each algorithmic bottleneck in Figure 10c. Note that these
measurements focus on the computing system only and do
not count the power consumption of the storage engine or
the impact of the thermal constraints. The measurements
are taken for a single camera, where the end-to-end system
consists of multiple cameras (e.g., eight for Tesla [70]) and
each camera is paired with a replica of the computing engine
to be able to process camera streams from diferent angles.
We will discuss the end-to-end system power consumption
in Section 5.3.
As shown in the igure, specialized hardware platforms

like FPGAs and ASICs ofer signiicantly higher energy ef-
iciency comparing to general-purpose platforms such as

7.5
0

500

1000

1500

2000

2500

P
o
w

e
r

(W
)

CPU GPU FPGA ASIC DET TRA LOC

Power

0.0
2.5
5.0
7.5
10.0
12.5
15.0

D
ri

v
in

g
 R

a
n

g
e

 R
e
d

u
c
it

o
n

 (
%

)

10% Driving Range Reduction 5% Driving Range Reduction Driving Range Reduction

Figure 12. The power consumption and the corresponding driving range reduction of running diferent algorithmic components
across diferent conigurations. Conigurations equipped with GPUs consume signiicant amount of power and reduce the
driving range up to 12% while ASICs approaches can achieve eiciency which only reduce the driving range by 2%.

conventional multicore CPUs and GPUs. For instance, run-
ning DET on ASICs reduces the power consumption by al-
most a factor of 7 comparing to CPUs and GPUs. Although
the measured power consumption of the computing engine
for individual camera is relatively low, remember that the
computing engines need to be replicated to handle multiple
camera streams and the storage engine and thermal con-
straints will heavily magnify end-to-end system power as
mentioned in Section 2.4.5. As we will demonstrate empiri-
cally in Section 5.3, the choice of accelerator platform has
a signiicant impact on the vehicle driving range and fuel
eiciency.
Finding 3. Specialized hardware like FPGAs and ASICs

ofers signiicantly higher energy eiciency comparing to con-

ventional general-purpose platforms like multiple CPUs and

GPUs for autonomous driving tasks.

5.2 End-to-End Performance

We then investigate the end-to-end system performance
of these accelerator-based autonomous driving system de-
signs. Figure 11 presents the mean latency and the 99.99th-
percentile latency of the end-to-end system across diferent
conigurations. The x-axis denotes the coniguration, where
the color of each grid represents the computing platform
each algorithmic component is running on (e.g., a red dotted
box on the x-axis represents running LOC on ASIC). For ex-
ample, the 2nd left-most set of bars in the igure represents
the latency of running DET and TRA both on GPUs, and
LOC on CPUs. Note the end-to-end latency is determined
by the slowest path between LOC and DET + TRA, because
they are executed in parallel.

We observe in the igure that certain conigurations (e.g.,
LOC on CPUs, DET and TRA on GPUs) can meet the per-
formance constraints at 100ms latency when mean latency
is considered, but are no longer viable when considering
the tail latency. This again conirms our observation that
tail latency should be used when evaluating autonomous
driving systems. In addition, none of the viable designs has
multicore CPUs due to the inherent non-determinism and
unpredictability. With acceleration, we are able to reduce the
end-to-end tail latency from 9.1s (i.e., on multicore CPUs) to
16.1ms to meet the real-time processing constraints.

Finding 4. Accelerator-based design is a viable approach

to build autonomous driving systems, and accelerator plat-

forms with high performance predictability (e.g., ASICs) are

preferable to meet the real-time processing constraints.

5.3 Power Analysis

In this section, we investigate the power consumption of the
end-to-end accelerator-based autonomous driving systems
and quantify the corresponding impact on the driving range
and fuel eiciency of the vehicle. The results are evaluated
based on a Chevy Bolt [10]. As mentioned in Section 2.4.5,
the system power consumption includes the both computing
engine and the storage engine, and will then be magniied
by the required cooling capacity to remove the additional
heat. We assume the system needs to store the map of the
United States (i.e., 110 W power for 41 TB storage space),
and is equipped with 8 cameras (i.e., the same as Tesla [70])
each connecting to a replica of the computing system.

Figure 12 presents the end-to-end power consumption of
the same set of accelerator-based autonomous driving system
conigurations as Figure 11, where we use the same notation
on x-axis to denote the system conigurations. The light blue
bars and left y-axis show the total power consumption of the
end-to-end system, and the dark blue bars and right y-axis
show its corresponding driving range reduction. While men-
tioned in Section 5.2 that powerful accelerators like GPUs
can deliver the computation at low latency, it is shown in
the igure that most of the conigurations equipped with
GPUs draw large amount of power (i.e., more than 1,000 W),
which results in signiicant reductions in the driving range
of the vehicle. In particular, performing all computing tasks
on GPUs can reduce the vehicle driving range by as much as
12%, which dilutes the beneit of using GPUs. To minimize
this negative impact, specialized hardware like FPGAs and
ASICs are needed to reduce the driving range reduction to
within 5%.

Finding 5.While power-hungry accelerators like GPUs can

deliver the computation at low latency, the driving range of

the vehicle can be signiicantly reduced by as much as 12%,

largely due to the magnifying efect of the thermal constraints

in such systems. Specialized hardware like FPGAs and ASICs

are needed to restrain the impact under 5%.

HHD HD (720p) HD+ FHD (1080p) QHD (1440p)

Resolution (Width)

0

25

50

75

100

125

150

L
a
te

n
c
y
 (

m
s
)

CPU GPU FPGA ASIC DET TRA LOC

Figure 13. Performance scalability regarding camera reso-
lutions of various conigurations. Although some conigu-
rations can meet the design constraints at Full HD (FHD)
resolution, none of them can sustain higher resolutions like
Quad HD (QHD). This suggests computational capacity still
remains the bottleneck that prevents us from achieving the
higher accuracy enabled by higher resolution cameras.

5.4 Scalability Analysis

Besides the processing latency, the performance predictabil-
ity of autonomous driving systems is also determined by the
functional aspects ś the accuracy of making the correct oper-
ational decisions. As demonstrated by prior work [3], increas-
ing camera resolution can signiicantly boost the accuracy of
the autonomous driving systems by sometimes as much as
10%. For example, doubling the input resolution can improve
the accuracy of VGG16, a DNN-based state-of-the-art ob-
ject detection algorithm, from 80.3% to 87.4%. Therefore, we
investigate the system scalability of our accelerator-based
autonomous driving systems in supporting future higher
resolution cameras. We modify the resolution of the bench-
marks to study this question, and present the end-to-end
latency as a function of the input camera resolution in Fig-
ure 13 of various accelerator-based conigurations. As we
can see from the igure, although some of the ASIC- and
GPU-accelerated systems can still meet the real-time per-
formance constraints at Full HD resolution (1080p), none of
these conigurations can sustain at Quad HD (QHD).
Finding 6. Computational capability still remains the bot-

tleneck that prevents us from beneiting from the higher system

accuracy enabled by higher resolution cameras.

6 Related Work

Prior work has surveyed the common algorithmic compo-
nents for autonomous driving systems [37]. However, the
algorithms presented by Kato et al. are quite outdated, which
do not represent the state-of-the-art autonomous driving
systems. To address this, we design and develop an end-to-
end autonomous driving system with recently developed
algorithms that ofer signiicantly higher accuracy. Geiger
et al. design and develop a benchmark suite of computer
vision applications for studying and evaluating autonomous

driving systems [20]. Amer et al. present a review of the state-
of-the-art algorithmic components used for path tracking in
autonomous driving systems [2].
There is also a large body of work accelerating machine

learning-based applications using various accelerator plat-
forms [1, 7ś9, 12ś14, 19, 23ś25, 30, 31, 36, 38, 41, 42, 58,
63, 80]. Speciically, GPUs have been shown to ofer or-
ders of magnitude performance improvement over multicore
CPUs [24, 25, 27, 58]. This is because many machine learning
algorithms spend a large fraction of their execution time per-
forming matrix multiplication, which can be parallelized on
the large number of threads ofered by GPUs. The common-
ality exists in these machine learning algorithms, especially
DNNs, allows researchers to design ASICs to accelerate them,
which ofer even higher performance beneits and energy ei-
ciency [1, 7ś9, 13, 14, 23, 36, 41]. FPGAs have been discussed
as another alternative, which also provide high performance
and energy eiciency with the additional capability of recon-
iguring the fabric programmatically [19, 42, 63]. In addition
to computation, prior work also explored novel memory ar-
chitectures to bring memory closer to processors [1, 12, 38].

7 Conclusion

This paper presents and formalizes the design constraints
in performance, predictability, storage, thermal and power
when building autonomous driving systems. To investigate
the design of such systems, we build a representative end-to-
end autonomous driving system using state-of-the-art ma-
chine learning algorithmic components. Using this system,
we then identify three computational bottlenecks, namely
localization, object detection and object tracking. To design
a system that meets all the design constraints, we explore
three diferent accelerator platforms to accelerate these com-
putational bottlenecks. We show that GPU-, FPGA-, and
ASIC-accelerated systems can reduce the tail latency of these
algorithms by 169×, 10×, and 93× respectively. Based on
these accelerated system designs, we further explore the
tradeofs among performance, power and future scalability
of autonomous driving systems. We ind that while power-
hungry accelerators like GPUs can predictably deliver the
computation at low latency, their high power consumption,
further magniied by the cooling load to meet the thermal
constraints, can signiicantly degrade the driving range and
fuel eiciency of the vehicle. We also demonstrate that com-
putational capability remains the bottleneck that prevents
us from beneiting from the higher system accuracy enabled
by higher resolution cameras.

8 Acknowledgement

We thank our anonymous reviewers for their feedback and
suggestions. This work was sponsored by Ford, Michigan
Institute for Data Science (MIDAS) and National Science
Foundation under grants NSF CAREER SHF-1553485.

References
[1] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and

A. Moshovos. 2016. Cnvlutin: Inefectual-Neuron-Free Deep Neural
Network Computing. In 2016 ACM/IEEE 43rd Annual International

Symposium on Computer Architecture (ISCA). 1ś13. htps://doi.org/10.

1109/ISCA.2016.11

[2] NoorHaizahAmer, Hairi Zamzuri, KhisbullahHudha, and Zulkili Ab-
dul Kadir. 2016. Modelling and Control Strategies in Path Tracking
Control for Autonomous Ground Vehicles: A Review of State of the
Art and Challenges. Journal of Intelligent & Robotic Systems (2016),
1ś30.

[3] Khalid Ashraf, Bichen Wu, Forrest N Iandola, MattthewWMoskewicz,
and Kurt Keutzer. 2016. Shallow networks for high-accuracy road
object-detection. arXiv preprint arXiv:1606.01561 (2016).

[4] Audi USA. 2017. 2017 Audi A4 ultra ofers highest EPA-estimated fuel
economy in competitive segment. (2017).

[5] Christian Berger and Bernhard Rumpe. 2014. Autonomous driving-5
years after the urban challenge: The anticipatory vehicle as a cyber-
physical system. arXiv preprint arXiv:1409.0413 (2014).

[6] G. Bradski. 2000. Dr. Dobb’s Journal of Software Tools (2000).
[7] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu,

Yunji Chen, and Olivier Temam. 2014. DianNao: A Small-footprint
High-throughput Accelerator for Ubiquitous Machine-learning. In
Proceedings of the 19th International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS ’14). ACM,
New York, NY, USA, 269ś284. htps://doi.org/10.1145/2541940.2541967

[8] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang,
Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam.
2014. DaDianNao: A Machine-Learning Supercomputer. In Proceedings

of the 47th Annual IEEE/ACM International Symposium on Microarchi-

tecture (MICRO-47). IEEE Computer Society, Washington, DC, USA,
609ś622. htps://doi.org/10.1109/MICRO.2014.58

[9] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A spatial
architecture for energy-eicient datalow for convolutional neural
networks. InComputer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual

International Symposium on. IEEE, 367ś379.
[10] Chervolet. 2017. Chevrolet Bolt EV. htp://www.chevrolet.com/

bolt-ev-electric-vehicle. (2017).
[11] Sharan Chetlur, Clif Woolley, Philippe Vandermersch, Jonathan Co-

hen, John Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cudnn:
Eicient primitives for deep learning. arXiv preprint arXiv:1410.0759
(2014).

[12] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan
Liu, Yu Wang, and Yuan Xie. 2016. PRIME: A Novel Processing-in-
memory Architecture for Neural Network Computation in ReRAM-
basedMainMemory. In Proceedings of the 43rd International Symposium

on Computer Architecture (ISCA ’16). IEEE Press, Piscataway, NJ, USA,
27ś39. htps://doi.org/10.1109/ISCA.2016.13

[13] Zidong Du, Daniel D. Ben-Dayan Rubin, Yunji Chen, Liqiang He, Tian-
shi Chen, Lei Zhang, Chengyong Wu, and Olivier Temam. 2015. Neu-
romorphic Accelerators: A Comparison Between Neuroscience and
Machine-learning Approaches. In Proceedings of the 48th International

Symposium on Microarchitecture (MICRO-48). ACM, New York, NY,
USA, 494ś507. htps://doi.org/10.1145/2830772.2830789

[14] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao
Luo, Xiaobing Feng, Yunji Chen, and Olivier Temam. 2015. ShiDi-
anNao: Shifting Vision Processing Closer to the Sensor. In Proceed-

ings of the 42Nd Annual International Symposium on Computer Ar-

chitecture (ISCA ’15). ACM, New York, NY, USA, 92ś104. htps:

//doi.org/10.1145/2749469.2750389

[15] Electrek. 2017. Elon Musk clariies Tesla’s plan for level 5 fully au-
tonomous driving: 2 years away from sleeping in the car. (2017).

[16] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zis-
serman. 2012. The PASCAL Visual Object Classes Challenge 2012

(VOC2012) Results. htp://www.pascal-network.org/challenges/VOC/
voc2012/workshop/index.html. (2012).

[17] R Farrington and J Rugh. 2000. Impact of vehicle air-conditioning on
fuel economy, tailpipe emissions, and electric vehicle range. In Earth

technologies forum. 1ś6.
[18] Mohammad Ali Fayazbakhsh and Majid Bahrami. 2013. Comprehensive

modeling of vehicle air conditioning loads using heat balance method.
Technical Report. SAE Technical Paper.

[19] Mingyu Gao, Christina Delimitrou, Dimin Niu, Krishna T. Malladi,
Hongzhong Zheng, Bob Brennan, and Christos Kozyrakis. 2016. DRAF:
A Low-power DRAM-based Reconigurable Acceleration Fabric. In
Proceedings of the 43rd International Symposium on Computer Archi-

tecture (ISCA ’16). IEEE Press, Piscataway, NJ, USA, 506ś518. htps:

//doi.org/10.1109/ISCA.2016.51

[20] Andreas Geiger, Philip Lenz, and Raquel Urtasun. 2012. Are we ready
for Autonomous Driving? The KITTI Vision Benchmark Suite. In
Conference on Computer Vision and Pattern Recognition (CVPR).

[21] Global Management Consulting. 2016. Autonomous Vehicle Adoption
Study. (2016).

[22] Google. 2016. Are We There Yet? Silicon in Self-Driving Cars. (2016).
[23] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A

Horowitz, and William J Dally. 2016. EIE: eicient inference engine
on compressed deep neural network. In Proceedings of the 43rd Inter-

national Symposium on Computer Architecture. IEEE Press, 243ś254.
[24] Johann Hauswald, Yiping Kang, Michael A. Laurenzano, Quan Chen,

Cheng Li, Trevor Mudge, Ronald G. Dreslinski, Jason Mars, and Lingjia
Tang. 2015. DjiNN and Tonic: DNNAs a Service and Its Implications for
Future Warehouse Scale Computers. In Proceedings of the 42Nd Annual

International Symposium on Computer Architecture (ISCA ’15). ACM,
New York, NY, USA, 27ś40. htps://doi.org/10.1145/2749469.2749472

[25] Johann Hauswald, Michael A. Laurenzano, Yunqi Zhang, Cheng Li,
Austin Rovinski, Arjun Khurana, Ronald G. Dreslinski, Trevor Mudge,
Vinicius Petrucci, Lingjia Tang, and Jason Mars. 2015. Sirius: An Open
End-to-End Voice and Vision Personal Assistant and Its Implications
for Future Warehouse Scale Computers. In Proceedings of the Twentieth

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS ’15). ACM, New York, NY,
USA, 223ś238. htps://doi.org/10.1145/2694344.2694347

[26] David Held, Sebastian Thrun, and Silvio Savarese. 2016. Learning to
track at 100 fps with deep regression networks. In European Conference

on Computer Vision. Springer, 749ś765.
[27] Parker Hill, Animesh Jain, Mason Hill, Babak Zamirai, Chang-Hong

Hsu, Michael A Laurenzano, Scott Mahlke, Lingjia Tang, and Jason
Mars. 2017. DeftNN: addressing bottlenecks for DNN execution on
GPUs via synapse vector elimination and near-compute data ission.
In Proceedings of the 50th Annual IEEE/ACM International Symposium

on Microarchitecture. ACM, 786ś799.
[28] Jason M Hirst, Jonathan R Miller, Brent A Kaplan, and Derek D Reed.

2013. Watts Up? PROAC PowerMeter for automated energy recording:
A product review. Behavior Analysis in Practice 6, 1 (2013), 82.

[29] Intel. 2017. Intel Core i7-4790K Processor. (2017).
[30] Animesh Jain, Parker Hill, Shih-Chieh Lin, Muneeb Khan, Md E Haque,

Michael A Laurenzano, Scott Mahlke, Lingjia Tang, and Jason Mars.
2016. Concise loads and stores: The case for an asymmetric compute-
memory architecture for approximation. InMicroarchitecture (MICRO),

2016 49th Annual IEEE/ACM International Symposium on. IEEE, 1ś13.
[31] Y. Ji, Y. Zhang, S. Li, P. Chi, C. Jiang, P. Qu, Y. Xie, and W. Chen. 2016.

NEUTRAMS: Neural network transformation and co-design under
neuromorphic hardware constraints. In 2016 49th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO). 1ś13. htps:

//doi.org/10.1109/MICRO.2016.7783724

[32] Yangqing Jia, Evan Shelhamer, Jef Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014.
Cafe: Convolutional Architecture for Fast Feature Embedding. arXiv
preprint arXiv:1408.5093 (2014).

https://doi.org/10.1109/ISCA.2016.11
https://doi.org/10.1109/ISCA.2016.11
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1109/MICRO.2014.58
http://www.chevrolet.com/bolt-ev-electric-vehicle
http://www.chevrolet.com/bolt-ev-electric-vehicle
https://doi.org/10.1109/ISCA.2016.13
https://doi.org/10.1145/2830772.2830789
https://doi.org/10.1145/2749469.2750389
https://doi.org/10.1145/2749469.2750389
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
https://doi.org/10.1109/ISCA.2016.51
https://doi.org/10.1109/ISCA.2016.51
https://doi.org/10.1145/2749469.2749472
https://doi.org/10.1145/2694344.2694347
https://doi.org/10.1109/MICRO.2016.7783724
https://doi.org/10.1109/MICRO.2016.7783724

[33] Gunnar Johansson and Kåre Rumar. 1971. Drivers’ brake reaction
times. Human Factors: The Journal of the Human Factors and Ergonomics

Society 13, 1 (1971), 23ś27.
[34] R Wayne Johnson, John L Evans, Peter Jacobsen, James R Thompson,

and Mark Christopher. 2004. The changing automotive environment:
high-temperature electronics. IEEE Transactions on Electronics Packag-

ing Manufacturing 27, 3 (2004), 164ś176.
[35] Khalid A Joudi, Abdul Sattar K Mohammed, and Mohammed K Al-

janabi. 2003. Experimental and computer performance study of an
automotive air conditioning system with alternative refrigerants. En-
ergy conversion and Management 44, 18 (2003), 2959ś2976.

[36] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos.
2016. Stripes: Bit-serial deep neural network computing. In 2016 49th

Annual IEEE/ACM International Symposium on Microarchitecture (MI-

CRO). 1ś12. htps://doi.org/10.1109/MICRO.2016.7783722

[37] Shinpei Kato, Eijiro Takeuchi, Yoshio Ishiguro, Yoshiki Ninomiya,
Kazuya Takeda, and Tsuyoshi Hamada. 2015. An open approach to
autonomous vehicles. IEEE Micro 35, 6 (2015), 60ś68.

[38] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay. 2016.
Neurocube: A Programmable Digital Neuromorphic Architecture with
High-Density 3DMemory. In 2016 ACM/IEEE 43rd Annual International

Symposium on Computer Architecture (ISCA). 380ś392. htps://doi.org/

10.1109/ISCA.2016.41

[39] Matej Kristan, Roman Plugfelder, Aleš Leonardis, Jiri Matas, Luka Če-
hovin, Georg Nebehay, Tomáš Vojíř, Gustavo Fernández, Alan Lukežič,

Aleksandar Dimitriev, Alfredo Petrosino, Amir Safari, Bo Li, Bo-

hyung Han, CherKeng Heng, Christophe Garcia, Dominik Pangeršič,

Gustav Häger, Fahad Shahbaz Khan, Franci Oven, Horst Possegger,

Horst Bischof, Hyeonseob Nam, Jianke Zhu, JiJia Li, Jin Young Choi,

Jin-Woo Choi, João F. Henriques, Joost van de Weijer, Jorge Batista,

Karel Lebeda, Kristofer Öfjäll, Kwang Moo Yi, Lei Qin, Longyin Wen,

Mario Edoardo Maresca, Martin Danelljan, Michael Felsberg, Ming-

Ming Cheng, Philip Torr, Qingming Huang, Richard Bowden, Sam

Hare, Samantha YueYing Lim, Seunghoon Hong, Shengcai Liao, Si-

mon Hadield, Stan Z. Li, Stefan Dufner, Stuart Golodetz, Thomas

Mauthner, Vibhav Vineet, Weiyao Lin, Yang Li, Yuankai Qi, Zhen

Lei, and Zhi Heng Niu. 2015. The Visual Object Tracking VOT2014

Challenge Results. Springer International Publishing, Cham, 191ś217.

htps://doi.org/10.1007/978-3-319-16181-5_14

[40] Jesse Levinson, Michael Montemerlo, and Sebastian Thrun. 2007. Map-

Based Precision Vehicle Localization in Urban Environments.. In Ro-

botics : Science and Systems (RSS), 2007.

[41] Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou, Shengyuan Zhou,

Olivier Teman, Xiaobing Feng, Xuehai Zhou, and Yunji Chen. 2015. Pu-

DianNao: A Polyvalent Machine Learning Accelerator. In Proceedings

of the Twentieth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS ’15). ACM,

New York, NY, USA, 369ś381. htps://doi.org/10.1145/2694344.2694358

[42] D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh, J. K.

Kim, and H. Esmaeilzadeh. 2016. TABLA: A uniied template-based

framework for accelerating statistical machine learning. In 2016 IEEE

International Symposium on High Performance Computer Architecture

(HPCA). 14ś26. htps://doi.org/10.1109/HPCA.2016.7446050

[43] Daniel V McGehee, Elizabeth N Mazzae, and GH Scott Baldwin. 2000.

Driver reaction time in crash avoidance research: Validation of a driv-

ing simulator study on a test track. In Proceedings of the human factors

and ergonomics society annual meeting, Vol. 44. SAGE Publications,

3ś320.

[44] Colin McManus, Winston Churchill, Ashley Napier, Ben Davis, and

Paul Newman. 2013. Distraction suppression for vision-based pose

estimation at city scales. In Robotics and Automation (ICRA), 2013 IEEE

International Conference on. IEEE, 3762ś3769.

[45] Matthew McNaughton, Chris Urmson, John M Dolan, and Jin-Woo

Lee. 2011. Motion planning for autonomous driving with a conformal
spatiotemporal lattice. In Robotics and Automation (ICRA), 2011 IEEE

International Conference on. IEEE, 4889ś4895.

[46] JM Miller, A Emadi, AV Rajarathnam, and M Ehsani. 1999. Current sta-

tus and future trends in more electric car power systems. In Vehicular

Technology Conference, 1999 IEEE 49th, Vol. 2. IEEE, 1380ś1384.

[47] Mobileye. 2017. Autonomous Driving. htps://www.mobileye.com/.

(2017).

[48] Mobileye. 2017. Enabling Autonomous. htp://www.mobileye.com/

future-of-mobility/mobileye-enabling-autonomous/. (2017).

[49] Mobileye. 2017. Mobileye C2-270 Essentials. (2017).

[50] Mobileye. 2017. Mobileye CES 2017 Press Conference. (2017).

[51] Mihir Mody. 2016. ADAS Front Camera: Demystifying Resolution and

Frame-Rate. EETimes. (2016).

[52] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. 2015.

ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE

Transactions on Robotics 31, 5 (2015), 1147ś1163.

[53] Ashley Napier and Paul Newman. 2012. Generation and exploitation of

local orthographic imagery for road vehicle localisation. In Intelligent

Vehicles Symposium (IV), 2012 IEEE. IEEE, 590ś596.

[54] Allen Newell and Stuart K Card. 1985. The prospects for psychological

science in human-computer interaction. Human-computer interaction

1, 3 (1985), 209ś242.

[55] David J Perreault and Vahe Caliskan. 2004. Automotive power genera-

tion and control. IEEE Transactions on Power Electronics 19, 3 (2004),

618ś630.

[56] Mihail Pivtoraiko, Ross A Knepper, and Alonzo Kelly. 2009. Difer-

entially constrained mobile robot motion planning in state lattices.

Journal of Field Robotics 26, 3 (2009), 308ś333.

[57] Joseph Redmon and Ali Farhadi. 2016. YOLO9000: Better, Faster,

Stronger. arXiv preprint arXiv:1612.08242 (2016).

[58] M. Rhu, N. Gimelshein, J. Clemons, A. Zuliqar, and S. W. Keckler. 2016.

vDNN: Virtualized deep neural networks for scalable, memory-eicient

neural network design. In 2016 49th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO). 1ś13. htps://doi.org/10.

1109/MICRO.2016.7783721

[59] SAE International. 2014. AUTOMATED DRIVING, Levels of driving

automation are deined in new SAE International standard J3016. htp:

//www.sae.org/misc/pdfs/automated_driving.pdf. (2014).

[60] Erwin M Schau, Marzia Traverso, and Matthias Finkbeiner. 2012. Life

cycle approach to sustainability assessment: a case study of remanu-

factured alternators. Journal of Remanufacturing 2, 1 (2012), 1ś14.

[61] Seagate Technology LLC. 2017. Seagate Desktop HDD Specii-

cation. htp://www.seagate.com/consumer/upgrade/desktop-hdd/

#specs. (2017).

[62] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. 2016.

Safe, Multi-Agent, Reinforcement Learning for Autonomous Driving.

NIPS Workshop on Learning, Inference and Control of Multi-Agent Sys-

tems (2016).

[63] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra,

and H. Esmaeilzadeh. 2016. From high-level deep neural models to

FPGAs. In 2016 49th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO). 1ś12. htps://doi.org/10.1109/MICRO.2016.

7783720

[64] Alexander D Stewart and Paul Newman. 2012. Laps-localisation using

appearance of prior structure: 6-dof monocular camera localisation

using prior pointclouds. In Robotics and Automation (ICRA), 2012 IEEE

International Conference on. IEEE, 2625ś2632.

[65] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and

Daniel Cremers. 2012. A benchmark for the evaluation of RGB-D

SLAM systems. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ

International Conference on. IEEE, 573ś580.

[66] TechCrunch. 2017. Intel buys Mobileye in $15.3B deal, moves its

automotive unit to Israel. (2017).

[67] TechCrunch. 2017. Nvidia is powering the world’s irst Level 3 self-

driving production car. (2017).

https://doi.org/10.1109/MICRO.2016.7783722
https://doi.org/10.1109/ISCA.2016.41
https://doi.org/10.1109/ISCA.2016.41
https://doi.org/10.1007/978-3-319-16181-5_14
https://doi.org/10.1145/2694344.2694358
https://doi.org/10.1109/HPCA.2016.7446050
https://www.mobileye.com/
http://www.mobileye.com/future-of-mobility/mobileye-enabling-autonomous/
http://www.mobileye.com/future-of-mobility/mobileye-enabling-autonomous/
https://doi.org/10.1109/MICRO.2016.7783721
https://doi.org/10.1109/MICRO.2016.7783721
http://www.sae.org/misc/pdfs/automated_driving.pdf
http://www.sae.org/misc/pdfs/automated_driving.pdf
http://www.seagate.com/consumer/upgrade/desktop-hdd/#specs
http://www.seagate.com/consumer/upgrade/desktop-hdd/#specs
https://doi.org/10.1109/MICRO.2016.7783720
https://doi.org/10.1109/MICRO.2016.7783720

[68] TechCrunch. 2017. Waymo reveals completely homegrown sensor
suite for Paciica autonomous test car. (2017).

[69] Tesla. 2017. Full Self-Driving Hardware on All Cars. htps://www.tesla.
com/autopilot. (2017).

[70] Tesla Inc. 2017. Tesla Autopilot: Full Self-Driving Hardware on All
Cars. htps://www.tesla.com/autopilot. (2017).

[71] Simon Thorpe, Denis Fize, Catherine Marlot, et al. 1996. Speed of
processing in the human visual system. nature 381, 6582 (1996), 520ś
522.

[72] Udacity. 2017. An Open Source Self-Driving Car. htps://www.udacity.
com/self-driving-car. (2017).

[73] Chris Urmson, JoshuaAnhalt, DrewBagnell, Christopher Baker, Robert
Bittner, MN Clark, John Dolan, Dave Duggins, Tugrul Galatali, Chris
Geyer, et al. 2008. Autonomous driving in urban environments: Boss
and the urban challenge. Journal of Field Robotics 25, 8 (2008), 425ś466.

[74] U.S. Department of Transportation ś Federal Highway Administra-
tion. 2015. Highway Statistics 2015. htps://www.fhwa.dot.gov/

policyinformation/statistics.cfm. (2015).
[75] U.S. Department of Transportation ś National Highway Traic Safety

Administration. 2017. Federal Automated Vehicles Policy: Accelerating
the Next Revolution in Roadway Safety. htps://www.transportation.
gov/AV. (2017).

[76] Velodyne. 2017. Velodyne HDL-64E LiDAR . htp://velodynelidar.com/

hdl-64e.html. (2017).

[77] Waymo. 2017. Introducing Waymo’s suite of custom-built, self-driving
hardware. (2017).

[78] Ryan W Wolcott and Ryan M Eustice. 2014. Visual localization within
LIDAR maps for automated urban driving. In Intelligent Robots and

Systems (IROS 2014), 2014 IEEE/RSJ International Conference on. IEEE,
176ś183.

[79] Ryan WWolcott and Ryan M Eustice. 2015. Fast LIDAR localization
using multiresolution Gaussian mixture maps. In Robotics and Automa-

tion (ICRA), 2015 IEEE International Conference on. IEEE, 2814ś2821.
[80] R. Yazdani, A. Segura, J. M. Arnau, and A. Gonzalez. 2016. An ultra low-

power hardware accelerator for automatic speech recognition. In 2016

49th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO). 1ś12. htps://doi.org/10.1109/MICRO.2016.7783750

[81] Ying C Yeh. 1996. Triple-triple redundant 777 primary light computer.
In Aerospace Applications Conference, 1996. Proceedings., 1996 IEEE,
Vol. 1. IEEE, 293ś307.

[82] Chen Zhang, Zhenman Fang, Peipei Zhou, Peichen Pan, and Jason
Cong. 2016. Cafeine: Towards uniformed representation and accel-
eration for deep convolutional neural networks. In Computer-Aided

Design (ICCAD), 2016 IEEE/ACM International Conference on. IEEE,
1ś8.

[83] Ji Zhang and Sanjiv Singh. 2015. Visual-lidar odometry and mapping:
Low-drift, robust, and fast. In Robotics and Automation (ICRA), 2015

IEEE International Conference on. IEEE, 2174ś2181.

https://www.tesla.com/autopilot
https://www.tesla.com/autopilot
https://www.tesla.com/autopilot
https://www.udacity.com/self-driving-car
https://www.udacity.com/self-driving-car
https://www.fhwa.dot.gov/policyinformation/statistics.cfm
https://www.fhwa.dot.gov/policyinformation/statistics.cfm
https://www.transportation.gov/AV
https://www.transportation.gov/AV
http://velodynelidar.com/hdl-64e.html
http://velodynelidar.com/hdl-64e.html
https://doi.org/10.1109/MICRO.2016.7783750

	Abstract
	1 Introduction
	2 Autonomous Driving
	2.1 Level of Automation
	2.2 Current Industry Status
	2.3 Autonomous Driving Pipeline
	2.4 Design Constraints

	3 End-to-End System
	3.1 Algorithmic Components
	3.2 System Characterization

	4 Accelerating Autonomous Driving
	4.1 Accelerator Platforms
	4.2 Porting Methodology

	5 Evaluation
	5.1 Acceleration Results
	5.2 End-to-End Performance
	5.3 Power Analysis
	5.4 Scalability Analysis

	6 Related Work
	7 Conclusion
	8 Acknowledgement
	References

