History-Based Harvesting of Spare Cycles and Storage in Large-Scale Datacenters

Yunqi Zhang, George Prekas, Giovanni Matteo Fumarola, Marcus Fontoura, Íñigo Goiri, Ricardo Bianchini

Datacenters are underutilized

- Datacenters are massive
- Overprovision resources
 - Low tail latency requirement
 - Provisioned for peak load
 - Unexpected load spikes and failures
- Underutilization wastes money

Server Utilization Distribution of a Google Cluster.

Harvesting spare resources

- Interactive services + batch
 - Low priority batch tasks

- Find "safe" co-locations
 - Cluster-level
- Performance isolation
 - Server-level

Challenges

- Interactive services "own" the servers
- Resource availability dynamics

Data storage co-location

Challenges

Interactive services "own" the servers Resource availability dynamics Task killing Data storage co-location Data unavailable Data loss

Distributed data analytics across servers

Goals

Improve efficiency without sacrificing QoS

Minimize the probability of killing batch tasks

Maximize data availability and durability

Batch task scheduling

Batch task scheduling

History-based task scheduling

Long Jobs

- Constant
- 1 MAX(Peak, Current)

ntilization headroom

Medium Jobs

- Periodic
- 1 MAX(Average, Current)

Short Jobs

- Unpredictable
- 1 Current

Data storage co-location

Data availability

Diverse in utilization pattern.

Data durability

Diverse in reimaging pattern.

History-based replica placement

History-based replica placement

History-based replica placement

System implementation

- Clustering service
 - Extract utilization and reimaging patterns
- YARN-H
 - Protect interactive services by killing batch tasks
- Tez-H
 - History-based batch task scheduling
- HDFS-H
 - History-based replica placement
 - Protect interactive services by denying accesses

Evaluation

- Real-system deployment
 - 102-server cluster
 - Interactive service: Lucene with utilization trace
 - Batch task: TPC-DS queries on Hive
- Large-scale simulation
 - Trace from 10 production datacenters at Microsoft
 - Full datacenters for one month
- Production environment deployment
 - Data replica placement

Batch task scheduling -- real system

Batch task scheduling -- real system

Batch task scheduling -- real system

Batch task scheduling -- simulation

Replica placement -- durability

- >2 orders of magnitude improvement
- Higher durability with fewer replicas

- Deployed to thousands of production servers for almost a year
- Eliminated data losses except minor bugs and not enough diversity

Lessons learned from deployment

Placement diversity and disk space utilization

Synchronous operations and unavailability

Simplicity is critical in production systems

More lessons in the paper

Conclusion

- History-based resource harvesting
 - Resource utilization dynamics
 - Data storage co-location
 - Complex data analytics distributed across servers
- Significantly improve datacenter efficiency
 - Deployed in production datacenters
 - Contributed to open-source community

History-Based Harvesting of Spare Cycles and Storage in Large-Scale Datacenters

Yunqi Zhang, George Prekas, Giovanni Matteo Fumarola, Marcus Fontoura, Íñigo Goiri, Ricardo Bianchini

