
SMiTe: Precise QoS Prediction on Real-System SMT Processors
to Improve Utilization in Warehouse Scale Computers

Yunqi Zhang, Michael A. Laurenzano, Jason Mars, Lingjia Tang

Clarity-Lab
Electrical Engineering and Computer Science
University of Michigan

SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve Utilization in Warehouse Scale Computers

Houston, we have a problem

2

• Warehouse scale computers are
expensive

• Host large-scale Internet services

• Warehouse scale computers are
expensive

• Host large-scale Internet services

• Inefficiency due to low utilization

• Co-location can solve the problem

75
100%. Moreover, when the system is idle, it is still consuming just under 175 W, which is over half
of the peak power consumption of the server!

5.2.3 USAGE PROFILE OF WAREHOUSE-SCALE COMPUTERS
Figure 5.4 shows the average CPU utilization of two Google clusters during a 3-month period
(measured between January and March 2013); each cluster has over 20,000 servers. The cluster on
the right (b) represents on of Google’s most highly utilized WSCs, where large continuous batch
workloads execute. WSCs of this class can be scheduled very efficiently and reach very high utiliza-
tions on average. The cluster on the left (b) is more representative of a typical shared WSC, which
mixes several types of workloads and includes online services. Such WSCs tend to have relatively
low average utilization, spending most of its time in the 10–50% CPU utilization range. This activ-
ity profile turns out to be a perfect mismatch with the energy efficiency profile of modern servers
in that they spend most of their time in the load region where they are most inefficient.

Figure 5.4: Average activity distribution of a sample of two Google clusters, each containing over
20,000 servers, over a period of 3 months (January-March 2013).

Another feature of the energy usage profile of WSCs is not shown in Figure 5.4; individual
servers in these systems also spend little time completely idle. Consider, for example, a large Web
search workload, such as the one described in Chapter 2, where queries are sent to a very large
number of servers, each of which searches within its local slice of the entire index. When search
traffic is high, all servers are being heavily used, but during periods of low traffic, a server might

5.2. THE ENERGY EFFICIENCY OF COMPUTING

Server utilization distribution of a Google cluster.
(Borroso et al, “The datacenter as a computer: An Introduction to the Design of
Warehouse-Scale Machines, Second edition”, Synthesis Lectures on Computer
Architecture ’2013)

SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve Utilization in Warehouse Scale Computers

Keep calm and make predictions

• CMP co-location

• Interference caused by
contention on shared cache and
memory bandwidth

3

private cacheprivate cache
core core

shared cache

memory

It is only going to be 1%
QoS degradation

• Precise QoS prediction for co-
location [Bubble-Up ’MICRO2011, Bubble-flux ’ISCA2013, Whare-
Map ‘ISCA2013, Paragon ’ASPLOS2013, Quasar ’ASPLOS2014]

• Identify “safe” co-locations

• Improve server utilization

SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve Utilization in Warehouse Scale Computers

What about SMT

• No prior works on SMT co-locations

• Significantly more challenging than
CMP co-location

• Fine-grained resource sharing

• Many more shared resources

• SMT is ubiquitous in modern WSCs

4

private cacheprivate cache

SMT

shared cache

memory

Hmm, it is hard to say…

SMT SMT SMT

core core

SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve Utilization in Warehouse Scale Computers

“For the Horde”

• Precise QoS interference prediction on real-system SMT
processors

• Identify “safe” co-locations to improve server utilization

5

Is SMT co-location really different from
 CMP co-location?

SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve Utilization in Warehouse Scale Computers

Prior work for CMP co-location

• One pressure score to quantify the
contention

• unified approach

• limited # shared resources

• Can we still use the same approach
for SMT co-location?

7

Unified metric to quantify the contention
[Bubble-Up ’MICRO2011]

app
QoS

bubble’s pressure

100%

90%

80%

2 10.....

Figure 2: Example sensitivity curve for A. Assum-
ing B’s pressure score is 2 we can predict A will be
performing at 90% of full performance.

workloads does not violate this QoS threshold (light bars),
while others violate the threshold (dark bars). An inabil-
ity to precisely predict the performance impact for a given
co-location leads to the heavy handed solution of simply
disallowing co-location. On the other hand, without pre-
diction, profiling all possible co-locations’ performance in-
terference beforehand to guide co-location decisions is pro-
hibitively expensive. The profiling complexity for all pair-
wise co-locations is O(N2) (N as the number of applica-
tions). With hundreds to thousands of applications running
in a datacenter, and the frequent development and updating
of these applications, a brute-force profiling approach is not
practical.

The goal of this work is to enable the precise prediction
of the performance degradation that results from contention
for shared resources in the memory subsystem. A precise
prediction is one that provides an expected amount of per-
formance lost when co-located. With this information, co-
locations that do not violate the QoS threshold of an appli-
cation can be allowed, resulting in improved utilization in
the datacenter.

This is a challenging problem. The most relevant re-
lated work aims to classify applications based on how ag-
gressive they are for the shared memory resources and iden-
tify co-locations to reduce contention based on the classifi-
cation [3,16,17,21,23,24,37,39,41]. However prior work has
not presented a solution to precisely predict the amount of
performance degradation suffered by each application due
to co-location, which is essential for co-location decisions of
latency-sensitive applications in WSCs. In this work, we
present such a solution: The Bubble-Up methodology.

The key insight of Bubble-Up is that predicting the perfor-
mance interference of co-running applications can be decou-
pled into 1) measuring the pressure on the memory subsys-
tem an application generates, and 2) measuring how much
an application suffers from different levels of pressure. The
underlying hypothesis is both pressure and sensitivity can
be quantified using a common pressure metric. Having such
a metric reduces the complexity of co-location analysis. As
opposed to the brute force approach of profiling and charac-
terizing every possible pairwise co-location, Bubble-Up only
requires characterizing each application once to produce pre-
cise pairwise interference predictions (e.g. O(N)).

Bubble-Up is a two-step characterization process. First,
each application is tested against an expanding bubble to
produce a sensitivity curve. The bubble is a carefully de-
signed stress test for the memory subsystem that provides
a “dial” for the amount of pressure applied to the entire

memory subsystem. This bubble is run along with the host
application being characterized. As this dial is increased au-
tomatically (expanding the bubble), the impact on the host
application is recorded, producing a sensitivity curve for the
host application such as the one illustrated in Figure 2. On
the y-axis, we have the normalized QoS performance of the
application (latency, throughput, etc), and the x-axis shows
the bubble pressure. In the second step, we identify a pres-
sure score for the application using a bubble pressure score
reporter. After these two steps of the Bubble-Up method-
ology is applied to each application, we have a sensitivity
curve and a pressure score for each application. Given two
applications A and B, we can then predict the performance
impact of application A when co-located with application B
by using A’s sensitivity curve to look up the relative perfor-
mance of A, at B’s pressure score. In the example shown
in Figure 2, B has a pressure score of 2, and as we can
see from A’s sensitivity curve, A’s predicted QoS with that
co-location is 90%.
The specific contributions of this work are as follows:

• We present the design of Bubble-Up, a general char-
acterization methodology that enables the precise pre-
diction of the performance degradation suffered by ar-
bitrary applications when co-located.

• We introduce 17 production Google workloads and char-
acterize their propensity to performance interference
when co-located on production servers.

• In addition to demonstrating the prediction accuracy
of our Bubble-Up methodology on the spectrum of
contentious kernel in our SmashBench suite, we also
evaluate the prediction accuracy and the improvement
in utilization when applying the Bubble-Up method-
ology to steer pairwise co-locations of Google applica-
tions in a production datacenter environment.

Using Bubble-Up, we are able to precisely predict the
performance degradation due to arbitrary co-locations of
Google applications with at most a 2.2% error and often
less than 1%. To evaluate using Bubble-Up to steer QoS
enforced co-locations of production workloads, we perform
a study in a 500-machine cluster and are able to increase the
machine utilization in the cluster by 50%–90%, depending
on the latency-sensitive applications’ allowable QoS thresh-
old.

2. BACKGROUND
In this section, we describe how large-scale web-services

are run in modern datacenters. We then discuss QoS and
co-locations in production datacenters.

2.1 Datacenter Task Placement
In modern warehouse scale computers, each web-service is

composed of one to hundreds of application tasks, and each
task runs on a single machine. A task is composed of an
application binary, associated data, and a configuration file
that specifies the machine level resources required. These
resources include the number of cores, amount of memory,
and disk space that are to be allocated to the task. The
configuration file for a tasks may also include special rules for
the cluster manager such as whether to disallow co-locations
with other tasks.

SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve Utilization in Warehouse Scale Computers

Is it really different

• More resource sharing dimensions

• private cache(s)

• memory ports

• functional units

8

private cacheprivate cache

SMT

shared cache

memory

Hmm, it is hard to say…

SMT SMT SMT

core core

CMP co-location

SMT co-location

SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve Utilization in Warehouse Scale Computers

• No, different resources do not correlate

• A Unified approach cannot capture

What if they correlate

9

Absolute Pearson correlation coefficient. 97% of the pairs < 0.8.

correlation

A decoupled approach is required to quantify the contention for SMT co-location

Throw some PMUs
and a little regression to the problem

SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve Utilization in Warehouse Scale Computers

PMUs and regression models

• Regression model based on PMU measurements

• 14% prediction error on average

11

A direct measurement of contenting behavior is desirable for SMT co-location

Ruler-based Approach

A decoupled approach is required to quantify the contention for SMT co-location

A direct measurement of contenting behavior is desirable for SMT co-location

SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve Utilization in Warehouse Scale Computers

Ruler-based approach

• Carefully designed set of micro-benchmarks

• Decouples contending behavior into each individual
dimension in isolation

• Each one is extremely contentious in one specific
resource sharing dimension

13

SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve Utilization in Warehouse Scale Computers

Ruler for functional units

14

 PORT 0

 PORT 1

 PORT 5

GPR SIMD INT SIMD FP
ALU

ALU
JMP

VI_MUL
VI_SHF

VI_ADD
VI_SHF

FP_MUL
Blend
DIV

FP_ADD

FP_SHF
FP_Boolean

Blend

Intel® AVX

ALU

loop:!
! mulps! %xmm0, %xmm0!
! ……!
! mulps! %xmm7, %xmm7!
! ……!
! jmp loop

(a) FP_MUL (PORT0)

#define MASK 0xd0000001u!
#define RAND (lfsr = (lfsr >> 1) ^ (unsigned int)(0 - (lfsr & 1u) & MASK))!
……!
! while (1) {!
! ! data_chunk[RAND % FOOTPRINT]++;!
! ! ……!
! ! data_chunk[RAND % FOOTPRINT]++;!
! }

(e) MEM (L1, L2 Cache)

……!
! first_chunk = data_chunk;!
! second_chunk = data_chunk + FOOTPRINT / 2;!
! while (1) {!
! ! for (i = 0; i < FOOTPRINT / 2; i += 64) {!
! ! ! first_chunk[i] = second_chunk[i] + 1;!
! ! }!
! ! for (i = 0; i < FOOTPRINT / 2; i += 64) {!
! ! ! second_chunk[i] = first_chunk[i] + 1;!
! ! }!
! }

(f) MEM (L3 Cache)

loop:!
! addps! %xmm0, %xmm0!
! ……!
! addps! %xmm7, %xmm7!
! ……!
! jmp loop

(b) FP_ADD (PORT1)

loop:!
! shufps! %xmm0, %xmm0!
! ……!
! shufps! %xmm7, %xmm7!
! ……!
! jmp loop

(c) FP_SHF (PORT5)

loop:!
! addl! ! %eax, %eax!
! ……!
! addl! ! %edx, %edx!
! ……!
! jmp loop

(d) INT_ADD (PORT0,1,5)

 PORT 0

 PORT 1

 PORT 5

GPR SIMD INT SIMD FP
ALU

ALU
JMP

VI_MUL
VI_SHF

VI_ADD
VI_SHF

FP_MUL
Blend
DIV

FP_ADD

FP_SHF
FP_Boolean

Blend

Intel® AVX

ALU• Port-specific instructions in
commodity server designs

• Stream of independent
instructions

• Achieve max utilization on
specific port

SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve Utilization in Warehouse Scale Computers

Use of Rulers

15

intensity and the resulting interference is highly useful
for reducing the profiling overhead. Instead of profiling
the entire sensitivity curve by sampling the degradation
under various intensity points, a linear relationship
requires only two samples at both end points of the
sensitivity curve.

It is very challenging to achieve these principles on real-
system SMT processors due to the complexity in a com-
modity processor. Here we present our carefully designed
Rulers.

Functional Unit Rulers - As presented in Fig-
ure 9(a-d), in order to design decoupled Rulers that
stress each resource independently, we design our func-
tional unit Rulers using port-specific instructions [11] (see
Figure 1). In addition, we remove all data dependencies
between consecutive instructions and unroll the loops to
maximize the functional unit utilization. By doing so, we
achieve higher than 99.99% utilization for the targeted
resource, validated using the hardware performance coun-
ters UOPS_DISPATCHED_PORT:PORT0,1,5. In addi-
tion, this design allows us to achieve the desirable linear
relationship between the Ruler intensity and the inter-
ference it causes, because the intensity of our functional
unit Ruler directly translates to the port utilization. Note
that because specialized functional units are commonly used
in modern processors, the design principle of the port-
specific functional unit Ruler can be applicable to other
microarchitectures such as IBM Power7 [12].

Memory Subsystem Rulers - Compared to functional
unit Rulers, it is more difficult to completely decouple the
interference in the memory subsystem because multiple lev-
els of caches can be inclusive. In addition, to issue memory
accesses, a certain amount of computation is unavoidable.
Thus, we design our Rulers to maximize the pressure
on the targeted cache level as an approximation, and rely
on the regression-based prediction model to decouple the
overlapping impact.

As shown in Figure 9(e), the L1 and L2 cache Rulers
randomly access a chunk of data using a lightweight random
number generator: linear-feedback shift register (LFSR). For
the L3 cache Ruler as shown in Figure 9(f), we use stride
access with a 64-byte offset, the size of the cache line, to
maximize the amount of pressure. For both designs, we
also unroll the loops to minimize the number of branch
instructions. The intensity of our memory subsystem Ruler
is defined as the working set size of each Ruler. We
measure the average Pearson correlation coefficient between
the working set size of our Ruler at each cache level and
the performance degradation of all SPEC applications when
co-located with the Ruler, and we observe strong linear
correlations. The Pearson coefficients are 0.92 for L1, 0.89
for L2 and 0.95 for L3 cache. This linear relationship sig-
nificantly reduces our profiling overhead, because the entire
sensitivity curve for all working set sizes can be accurately
approximated by interpolating between 3 Rulers whose
working set sizes being the L1, L2 and L3 cache sizes.

2) Characterizing Contentiousness and Sensitivity: To
quantify an application’s sensitivity and contentiousness, we
co-locate the application with the Rulers on the neighbor-
ing hardware context on an SMT core. For each resource i,
we measure the application A’s performance degradation as
its sensitivity Sen

A

i

via the following equation:

Sen

A

i

=
IPC

A

solo

� IPC

A

co�location/Ruler

i

IPC

A

solo

(1)

Similarly, we define application A’s contentiousness Con

A

i

as the corresponding Ruler’s performance degradation.

Con

A

i

=
IPC

Ruler

i

solo

� IPC

Ruler

i

co�location/A

IPC

Ruler

i

solo

(2)

C. Performance Prediction Model

1) Prediction Model: After characterizing each applica-
tion, to predict the performance degradation of application
A when co-located with application B on an SMT core,
we combine both A’s sensitivity and B’s contentiousness
on each sharing dimension i, using a linear model. The
prediction model is shown in Equation 3.

Deg

A

co�locate/B

=
NX

i

(c
i

⇥ Sen

A

i

⇥ Con

B

i

) + c0 (3)

In this model, the degradation for A in each dimen-
sion is proportional to measured application A’s sensitivity
and the co-located application B’s contentiousness on that
dimension. The linear model reflects the assumption that
an application’s performance degradation from each shared
dimension is additive. The amount (weight) that each sharing
dimension contributes to the total performance degradation
is captured by the coefficient c

i

. The constant term c0

is introduced to approximate the performance interference
caused by other resources not captured in the model. A
constant is used because the impact of other resources
should have a small variance across applications, based our
assumption that functional units and memory subsystem are
the main contributors for the degradation.

2) Manage Prediction Error: There are two main sources
of potential prediction errors. Firstly, the model can only
capture the interference in a limited number of dimensions.
Other shared resources such as the branch predictor might
also cause performance interference, which are approxi-
mated by the constant c0 in our model. Secondly, in order
to reduce the profiling overhead, we take advantage of the
approximately linear relationship between the intensity of
a Ruler and the performance interference. This approx-
imation might introduce errors in performance prediction.
However, as we will show in our evaluation (Section IV),
our model achieves high precision, demonstrating that the
model has captured the significant resource dimensions.

SMT SMT

core

A

SMT SMT

core

B

SMT SMT

core

BA

SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve Utilization in Warehouse Scale Computers

SMiTe prediction

• Regression model based on Ruler characterization

• Evaluated on real-system SMT processors

16

• 2% prediction error on average (14% PMU-based)

SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve Utilization in Warehouse Scale Computers

Putting in all together

17

• Close to Oracle
• 42% Improvement

• < 2% Violation
• QoS Awareness

SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve Utilization in Warehouse Scale Computers

Conclusion

• A decoupled methodology to quantify contention is
required for precise interference prediction

• more shared resources in SMT co-location

• contending behaviors in different dimensions do not correlate

• Ruler-based approach provides precision on real systems

• 2% prediction error

• Improve warehouse scale computer utilization

• 42% server utilization improvement

18

SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve Utilization in Warehouse Scale Computers

Questions

19

