
SMiTe: Precise QoS Prediction on Real-System SMT Processors
to Improve Utilization in Warehouse Scale Computers
Yunqi Zhang, Michael A. Laurenzano, Jason Mars, Lingjia Tang
Clarity-Lab, Electrical Engineering and Computer Science, University of Michigan, Ann Arbor

A

B Ruler

Ruler

Sen(L1)

C
on

(P
O

RT
0)

…
…

Sensitivity and Contentiousness!
in Each Sharing Dimension

Sen(L1)

C
on

(P
O

RT
0)

…
…

Sensitivity and Contentiousness!
in Each Sharing Dimension

Performance Prediction Model

A B

SMT Co-Location

CMP Co-Location

A B

loop:!
! mulps! %xmm0, %xmm0!
! ……!
! mulps! %xmm7, %xmm7!
! ……!
! jmp loop

(a) FP_MUL (PORT0)

#define MASK 0xd0000001u!
#define RAND (lfsr = (lfsr >> 1) ^ (unsigned int)(0 - (lfsr & 1u) & MASK))!
……!
! while (1) {!
! ! data_chunk[RAND % FOOTPRINT]++;!
! ! ……!
! ! data_chunk[RAND % FOOTPRINT]++;!
! }

(e) MEM (L1, L2 Cache)

……!
! first_chunk = data_chunk;!
! second_chunk = data_chunk + FOOTPRINT / 2;!
! while (1) {!
! ! for (i = 0; i < FOOTPRINT / 2; i += 64) {!
! ! ! first_chunk[i] = second_chunk[i] + 1;!
! ! }!
! ! for (i = 0; i < FOOTPRINT / 2; i += 64) {!
! ! ! second_chunk[i] = first_chunk[i] + 1;!
! ! }!
! }

(f) MEM (L3 Cache)

loop:!
! addps! %xmm0, %xmm0!
! ……!
! addps! %xmm7, %xmm7!
! ……!
! jmp loop

(b) FP_ADD (PORT1)

loop:!
! shufps! %xmm0, %xmm0!
! ……!
! shufps! %xmm7, %xmm7!
! ……!
! jmp loop

(c) FP_SHF (PORT5)

loop:!
! addl! ! %eax, %eax!
! ……!
! addl! ! %edx, %edx!
! ……!
! jmp loop

(d) INT_ADD (PORT0,1,5)

app
QoS

bubble’s pressure

100%

90%

80%

2 10.....

Figure 2: Example sensitivity curve for A. Assum-
ing B’s pressure score is 2 we can predict A will be
performing at 90% of full performance.

workloads does not violate this QoS threshold (light bars),
while others violate the threshold (dark bars). An inabil-
ity to precisely predict the performance impact for a given
co-location leads to the heavy handed solution of simply
disallowing co-location. On the other hand, without pre-
diction, profiling all possible co-locations’ performance in-
terference beforehand to guide co-location decisions is pro-
hibitively expensive. The profiling complexity for all pair-
wise co-locations is O(N2) (N as the number of applica-
tions). With hundreds to thousands of applications running
in a datacenter, and the frequent development and updating
of these applications, a brute-force profiling approach is not
practical.

The goal of this work is to enable the precise prediction
of the performance degradation that results from contention
for shared resources in the memory subsystem. A precise
prediction is one that provides an expected amount of per-
formance lost when co-located. With this information, co-
locations that do not violate the QoS threshold of an appli-
cation can be allowed, resulting in improved utilization in
the datacenter.

This is a challenging problem. The most relevant re-
lated work aims to classify applications based on how ag-
gressive they are for the shared memory resources and iden-
tify co-locations to reduce contention based on the classifi-
cation [3,16,17,21,23,24,37,39,41]. However prior work has
not presented a solution to precisely predict the amount of
performance degradation suffered by each application due
to co-location, which is essential for co-location decisions of
latency-sensitive applications in WSCs. In this work, we
present such a solution: The Bubble-Up methodology.

The key insight of Bubble-Up is that predicting the perfor-
mance interference of co-running applications can be decou-
pled into 1) measuring the pressure on the memory subsys-
tem an application generates, and 2) measuring how much
an application suffers from different levels of pressure. The
underlying hypothesis is both pressure and sensitivity can
be quantified using a common pressure metric. Having such
a metric reduces the complexity of co-location analysis. As
opposed to the brute force approach of profiling and charac-
terizing every possible pairwise co-location, Bubble-Up only
requires characterizing each application once to produce pre-
cise pairwise interference predictions (e.g. O(N)).

Bubble-Up is a two-step characterization process. First,
each application is tested against an expanding bubble to
produce a sensitivity curve. The bubble is a carefully de-
signed stress test for the memory subsystem that provides
a “dial” for the amount of pressure applied to the entire

memory subsystem. This bubble is run along with the host
application being characterized. As this dial is increased au-
tomatically (expanding the bubble), the impact on the host
application is recorded, producing a sensitivity curve for the
host application such as the one illustrated in Figure 2. On
the y-axis, we have the normalized QoS performance of the
application (latency, throughput, etc), and the x-axis shows
the bubble pressure. In the second step, we identify a pres-
sure score for the application using a bubble pressure score
reporter. After these two steps of the Bubble-Up method-
ology is applied to each application, we have a sensitivity
curve and a pressure score for each application. Given two
applications A and B, we can then predict the performance
impact of application A when co-located with application B
by using A’s sensitivity curve to look up the relative perfor-
mance of A, at B’s pressure score. In the example shown
in Figure 2, B has a pressure score of 2, and as we can
see from A’s sensitivity curve, A’s predicted QoS with that
co-location is 90%.
The specific contributions of this work are as follows:

• We present the design of Bubble-Up, a general char-
acterization methodology that enables the precise pre-
diction of the performance degradation suffered by ar-
bitrary applications when co-located.

• We introduce 17 production Google workloads and char-
acterize their propensity to performance interference
when co-located on production servers.

• In addition to demonstrating the prediction accuracy
of our Bubble-Up methodology on the spectrum of
contentious kernel in our SmashBench suite, we also
evaluate the prediction accuracy and the improvement
in utilization when applying the Bubble-Up method-
ology to steer pairwise co-locations of Google applica-
tions in a production datacenter environment.

Using Bubble-Up, we are able to precisely predict the
performance degradation due to arbitrary co-locations of
Google applications with at most a 2.2% error and often
less than 1%. To evaluate using Bubble-Up to steer QoS
enforced co-locations of production workloads, we perform
a study in a 500-machine cluster and are able to increase the
machine utilization in the cluster by 50%–90%, depending
on the latency-sensitive applications’ allowable QoS thresh-
old.

2. BACKGROUND
In this section, we describe how large-scale web-services

are run in modern datacenters. We then discuss QoS and
co-locations in production datacenters.

2.1 Datacenter Task Placement
In modern warehouse scale computers, each web-service is

composed of one to hundreds of application tasks, and each
task runs on a single machine. A task is composed of an
application binary, associated data, and a configuration file
that specifies the machine level resources required. These
resources include the number of cores, amount of memory,
and disk space that are to be allocated to the task. The
configuration file for a tasks may also include special rules for
the cluster manager such as whether to disallow co-locations
with other tasks.

 PORT 0

 PORT 1

 PORT 5

GPR SIMD INT SIMD FP
ALU

ALU
JMP

VI_MUL
VI_SHF

VI_ADD
VI_SHF

FP_MUL
Blend
DIV

FP_ADD

FP_SHF
FP_Boolean

Blend

Intel® AVX

ALU

SMiTe Methodology Overview

Precise Interference Prediction on Real-System SMT Processors

Data Center Utilization Improvement

Goal: Improve Data Center Utilization

75
100%. Moreover, when the system is idle, it is still consuming just under 175 W, which is over half
of the peak power consumption of the server!

5.2.3 USAGE PROFILE OF WAREHOUSE-SCALE COMPUTERS
Figure 5.4 shows the average CPU utilization of two Google clusters during a 3-month period
(measured between January and March 2013); each cluster has over 20,000 servers. The cluster on
the right (b) represents on of Google’s most highly utilized WSCs, where large continuous batch
workloads execute. WSCs of this class can be scheduled very efficiently and reach very high utiliza-
tions on average. The cluster on the left (b) is more representative of a typical shared WSC, which
mixes several types of workloads and includes online services. Such WSCs tend to have relatively
low average utilization, spending most of its time in the 10–50% CPU utilization range. This activ-
ity profile turns out to be a perfect mismatch with the energy efficiency profile of modern servers
in that they spend most of their time in the load region where they are most inefficient.

Figure 5.4: Average activity distribution of a sample of two Google clusters, each containing over
20,000 servers, over a period of 3 months (January-March 2013).

Another feature of the energy usage profile of WSCs is not shown in Figure 5.4; individual
servers in these systems also spend little time completely idle. Consider, for example, a large Web
search workload, such as the one described in Chapter 2, where queries are sent to a very large
number of servers, each of which searches within its local slice of the entire index. When search
traffic is high, all servers are being heavily used, but during periods of low traffic, a server might

5.2. THE ENERGY EFFICIENCY OF COMPUTING

SMT Co-location is Harder than CMP

Solution: Ruler-based Methodology

< 2% Prediction Error

42% Utilization Improvement

Commodity Processor

Decoupled Quantification

Direct Interference Measurement

Precise interference prediction identifies “safe” co-locations to improve server utilization

Unified approach for CMP co-location Unified approach does not work for SMT

C
or

re
la

tio
n

am
on

g
sh

ar
ed

 re
so

ur
ce

s
on

 S
M

T
Max utilization in each resource sharing dimension

