
0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2865943, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, X 201X 1

Phantasy: Low-Latency Virtualization-based
Fault Tolerance via Asynchronous Prefetching

Shiru Ren, Yunqi Zhang, Lichen Pan, Zhen Xiao, Senior Member, IEEE

Abstract—Fault tolerance has become increasingly critical for virtualized systems as growing amount of mission-critical applications
are now deployed on virtual machines rather than directly on physical machines. However, prior hardware-based fault-tolerant systems
require extensive modification to existing hardware, which makes them infeasible for industry practitioners. Although software-based
techniques realize fault tolerance without any hardware modification, they suffer from significant latency overhead that is often orders of
magnitude higher than acceptable. To realize practical low-latency fault tolerance in the virtualized environment, we first identify two
bottlenecks in prior approaches, namely the overhead for tracking dirty pages in software and the long sequential dependency in
checkpointing system states. To address these bottlenecks, we design a novel mechanism to asynchronously prefetch the dirty pages
without disrupting the primary VM execution to shorten the sequential dependency. We then develop Phantasy, a system that
leverages page-modification logging (PML) technology available on commodity processors to reduce the dirty page tracking overhead
and asynchronously prefetches dirty pages through direct remote memory access via RDMA. Evaluated on 25 real-world applications,
we demonstrate Phantasy can significantly reduce the performance overhead by 38% on average, and further reduce the latency by
85% compared to a state-of-the-art virtualization-based fault-tolerant system.

Index Terms—Fault tolerance, virtualization, checkpoint, recovery.

F

1 INTRODUCTION

IN recent years, deploying on virtual machines (VMs)
rather than directly on physical machines has become

more and more common for the increasingly wide range
of application domains for the ease of use and high porta-
bility. While some of these application domains may have
low availability requirements, others like financial services,
database management systems, and network functions vir-
tualization services are mission-critical and therefore de-
mand extremely high availability and reliability. For in-
stance, financial services and network functions virtualiza-
tion services typically demand at least five nines availability
(i.e., 99.999%) [1], which is orders of magnitude higher than
what cloud providers like Amazon EC2 can promise in the
face of hardware failures [2].

To close down this gap, recent work has sought to
provide fault tolerance (FT) by seamless failover in the event
of hardware failures for the virtualized environment using
both hardware and software techniques. Hardware-based
fault tolerance survives failures by duplicating hardware
components to provide the necessary redundancy in case
one should fail [3], [4]. However, such techniques require
extensive modifications to the existing hardware or addi-
tional hardware components that are not available in com-
modity systems, which make them infeasible for industry
practitioners.

In contrast, software-based techniques provide fault tol-
erance without any modification to existing hardware by

• S. Ren, L. Pan, and Z. Xiao are with the Department of Computer Science,
Peking University, Beijing, 100871, China.
Email: {rsr, plc, xiaozhen}@net.pku.edu.cn.

• Y. Zhang is with the Department of Computer Science and Engineering,
University of Michigan, Ann Arbor, MI 48109.
Email: yunqi@umich.edu.

periodically backing up the entire system states of the pri-
mary VM to a secondary VM hosted on a different physical
machine, which will continue execution on behalf of the pri-
mary VM in the event of hardware failures on the primary
VM [5], [6], [7], [8], [9], [10], [11], [12], [13]. Specifically,
these systems often take incremental checkpoints of the
system states including CPU, memory and other devices,
and transmit these checkpoints to the secondary VM period-
ically (i.e., every epoch) to enable seamless failover. Because
such systems can run on commodity hardware without any
modification, they are considered much more feasible than
hardware-based techniques.

However, these systems introduce significant latency
and overhead (i.e., two to three orders of magnitude higher
latency as we show later in the paper) because all the check-
points are managed in software as opposed to hardware.
This greatly restricts their application and prevents such sys-
tems from being widely deployed in production, as many
mission-critical applications are real-time and inherently
sensitive to latency. For example, stock exchange systems
have stringent latency requirements to be able to react in
time to the frequent trades in real-time, and high latency in
online services like web search and social networks directly
translates to poor user experience [14], [15]. Therefore, re-
alizing efficient and low-latency virtualization-based fault-
tolerant systems that can be deployed in production still
largely remains an open research question.

To answer this question, we first conduct an in-depth in-
vestigation to understand the bottlenecks of prior software-
based techniques, in which we find the software-based
dirty page tracking and long sequential dependency in
checkpoint management being the largest contributors to
the significant latency overhead. Specifically, to replicate the
system states of the primary VM, all the dirty pages need

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2865943, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, X 201X 2

to be recorded and transmitted to the secondary VM in
the checkpoints. Given how fast modern processors operate
and thereby the large amount memory accesses issued,
translating to large numbers of dirty pages, keeping track of
all the dirty pages in software is simply intractable because
each new dirty page needs invoke an expensive page fault
VM exit. In addition, all the output system states generated
within an epoch (e.g., a response network packet to respond
a query) cannot be sent out until the corresponding check-
point has been sent successfully to the secondary VM after
the end of the epoch, resulting in a long sequential depen-
dency which consists of executing each epoch, generating
and transmitting the checkpoint. This dependency is again
magnified by the large number of dirty pages generated in
each epoch as larger checkpoints need to be managed, which
leads to significant degradation in response latency.

To overcome these bottlenecks, we design and develop
Phantasy, a system that keeps track of dirty pages using
page-modification logging (PML) [16] available in commod-
ity Intel processors to reduce page tracking overhead, and
asynchronously prefetches the dirty pages to shorten the se-
quential dependency of generating and transmitting check-
points. Specifically, PML provides hardware-assisted mon-
itoring of dirty pages generated during the VM execution,
which significantly reduces the overhead compared to the
software-based techniques that invoke expensive page fault
VM exits. To shorten the sequential dependency, we design a
fundamentally novel technique that speculatively prefetches
the dirty pages identified by PML from the primary VM
without interrupting its execution instead of waiting for
the end of each epoch. Combined with the direct access
to the remote memory provided by RDMA, the prefetch
is designed to be driven entirely by the secondary VMM
(Virtual Machine Manager) and completely transparent to
the execution of the primary VM. Consequently, only the
dirty pages that have not been prefetched need to be check-
pointed at the end of the epoch, while the majority of the
dirty pages have already been prefetched to the secondary
VM.

We evaluate Phantasy on 25 real-world applica-
tions spanning both conventional memory-intensive and
compute-intensive batch processing applications and
mission-critical latency-sensitive applications that bene-
fit significantly from fault tolerance. By asynchronously
prefetching the dirty pages, our system reduces the number
of dirty pages that need to be checkpointed each epoch by
more than 50% and up to 84% compared to the state-of-the-
art virtualization-based fault-tolerant system. Experimental
results show that Phantasy significantly reduces the over-
head of batch processing applications by 38% on average,
and further improves the latency of latency-sensitive appli-
cations by more than 85%.

To the best our knowledge, this is the first paper that
realizes a virtualization-based fault-tolerant system with
low enough overhead that is practical to be deployed in
production. Specifically, this paper makes the following
contributions.

• We present an asynchronous prefetching mechanism
that speculatively prefetches the dirty pages from
the primary VM without disrupting its execution to

shorten the sequential dependency of generating and
transmitting VM checkpoints.

• We develop Phantasy leveraging PML technology
available on commodity Intel processors and direct
remote memory access offered by RDMA to reduce
the overhead of dirty page tracking and prefetch the
dirty pages to the secondary VM.

• We evaluate our system using 25 real-world applica-
tions spanning a wide range of application charac-
teristics, and demonstrate the effectiveness of Phan-
tasy in reducing performance overhead and query
latency.

The rest of this paper is organized as follows. Section 2
gives a brief summary of prior techniques and illustrates
their limitations. Section 3 presents design principles and
the system architecture of Phantasy. Section 4 describes
how Phantasy implements the asynchronous prefetching
mechanism via RDMA and PML to overcome the limita-
tions of prior work. Section 5 discusses several performance
optimizations. We evaluate Phantasy in section 6. Section 7
discusses related work and section 8 concludes the paper.

2 BACKGROUND

In this section, we first present a brief summary of prior
work in virtualization-based fault-tolerant systems leverag-
ing periodic checkpoints. We then discuss the limitations of
prior works preventing these techniques from being widely
adopted in the production environment.

2.1 Virtualization-Based Fault Tolerance
Prior work introduces the technique of periodically check-
pointing the entire VM states to a secondary VM running
on a different physical machine to provide fault tolerance
in case of machine failures. Specifically, the primary VMM
takes incremental checkpoints of the CPU, memory, and
device states periodically at a fixed frequency, which is very
similar to the pre-copy phase of live VM migration [17].
To ensure the secondary VM can transparently continue the
execution in the event of machine failure, all the I/O events
(i.e., network communication and disk operations) need to
be held in a buffer before they can be committed after
the corresponding VM checkpoint has been successfully
transmitted to the secondary VM.

In such systems, the primary VM is typically paused ev-
ery tens of milliseconds, which is often referred as an epoch,
to checkpoint system states as illustrated in Fig. 1. During
each epoch, all dirty pages are tracked while handling the
page fault VM exits in the VMM. Meanwhile, all the output
system states are buffered temporarily. At the end of each
epoch, the primary VM execution will be paused, so that
the primary VMM can generate an incremental checkpoint
by invoking the pre-copy phase of live migration [17] to
copy all the dirty pages and system states to a local staging
area in the VMM. A new buffer is then inserted to keep
track of all the output states of the next upcoming epoch.
Once the new buffer has been inserted, the primary VM can
resume execution while the VMM starting to transmit the
checkpoint to the secondary VMM. The primary VM can re-
sume execution immediately because the speculative states

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2865943, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, X 201X 3

VM VMM

Primary Host

VMM VM

Secondary HostClient’s View Time

Network

Packet (k)

Epoch (i)

Pause

Epoch (i+1)

I/O Buffer

Buffer

Release

Buffer

Overhead

Latency of

Packet (k)

…

Fig. 1: The execution flow of the virtualization-based
checkpoint-recovery fault tolerance.

in the next epoch are not visible to the outside world. Upon
receiving the acknowledgement of successfully transmitting
the last checkpoint, the primary VMM can free up the state
buffer used for the previous epoch.

In the event of hardware failure on the primary host,
the primary VMM will stop heartbeating, which triggers a
failover to the secondary VM instantly. The secondary VM
starts execution on behalf of the primary VM from the most
recent successfully transmitted checkpoint, so the transition-
ing can be transparent to the users. The uncommitted states
on the primary VM that haven’t been transmitted to the
secondary VM and the buffered outgoing network packets
will be lost, but it will only appear to be a temporary packet
loss to the outside world as the secondary VM takes over
the execution.

2.2 Limitations of Prior Work

While the simplicity of such design is appealing, it intro-
duces significant latency and performance overhead, which
greatly restricts its application.

2.2.1 Batch Processing Applications

In particular, there are primarily two sources of performance
overhead as illustrated in Fig. 1 for batch applications
(e.g., SPEC, PARSEC, and kernel-build) that are not latency-
sensitive.

• The overhead of tracking all the dirty pages in the
VMM.

• The overhead of generating checkpoints, where the
primary VM execution needs to be paused.

Given how fast modern multi-core processors operate,
applications often issue a huge amount of memory accesses
even in an extremely short period of time, translating to a
large number of dirty pages. Therefore, tracking all these
dirty pages in the VMM incurs significant performance
overhead in the software stack. In addition, the more dirty
pages there are, the longer it takes to generate the check-
points. In aggregate, prior work often incurs over 40%
performance overhead running these batch applications [6].

2.2.2 Latency-Sensitive Applications

As opposed to these batch applications, many mission-
critical applications are latency-sensitive (e.g., database
management systems, network functions virtualization ser-
vices, and data caching services) that heavily interact with
I/O devices. Due to their criticality, these applications can
benefit a great deal from fault tolerance. However, they
experience even more degradation, typically in the form
of latency increase, running on systems presented in prior
work. This is because they suffer two more sources of
degradation in addition to the two we discussed above as
demonstrated in Fig. 1.

• The latency to finish executing an epoch, as all out-
going I/O events will be buffered within each epoch.

• The latency to transmit the generated checkpoint and
receive the acknowledgement, because the buffer can
only be released after receiving the acknowledge-
ment.

These four sources of latency present an interesting
tradeoff between the length of an epoch and the overhead of
generating and transmitting the checkpoint. The longer each
epoch is, the less overhead generating and transmitting the
checkpoint contribute overall because they are invoked less
often. However, longer epoch also translates to longer la-
tency to finish executing each epoch, which also contributes
to the overall latency increase. To amortize the overhead
of generating and transmitting the checkpoint, prior work
often sets the length of each epoch to at least tens of
milliseconds. As a result, any mission-critical or latency-
sensitive application with millisecond or sub-millisecond
level latency suffers significant performance degradation.

Moreover, when the application yields a large amount
of dirty pages such that the checkpoint cannot be generated
and transmitted within the duration of the next epoch, the
VMM will not receive the acknowledgement for the current
checkpoint in time to start to generate the next checkpoint.
This results in a prolonged next epoch, which further aggra-
vates the overhead in both the latency to finish executing
an epoch (i.e., the next epoch will be lengthened due to the
delayed acknowledgement) and the latency to generate and
transmit the next checkpoint (i.e., longer epoch often yields
more dirty pages thereby larger checkpoint). Consequently,
the application will experience increasing amount of latency
degradation due to the queueing effect (i.e., overutilized
queueing system) as the length of each epoch and the size
of each checkpoint keep growing.

2.2.3 Summary

Based on the above analysis, we summarize the limitations
of prior work as following.

• Software-Based Page Tracking: Keeping tracking of
dirty pages in the software stack introduces signifi-
cant overhead.

• Long Sequential Dependency: Large portion of the
overhead and latency degradation can be attributed
to the long series of events that can only be executed
sequentially, namely executing each epoch, generat-
ing the checkpoint and transmitting the checkpoint.

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2865943, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, X 201X 4

Net IO

RDMA Packets

Hardware

QEMU

KVM
Dirty Pages

Logger

Linux

Kernel

Intel PML Ethernet InfiniBand

Primary Host

Controller Checkpoint Saver

In
te

rn
a

l N
e

tw
o

rk

External Network

Hardware

QEMU

Linux

Kernel

Intel PMLEthernetInfiniBand

Secondary Host

Controller

Checkpoint Loader

Prefetcher

KVM

Protected VM (running)

Applica"ons

OS

Network

Buffer

Protected VM (state only)

Applica"ons

OS

Fig. 2: Architecture overview.

Both of these limitations are further magnified by the
large number of dirty pages, which increases the overhead
of tracking dirty pages and prolongs the duration of the
sequential events. In practice, systems like Remus [6] in-
cur two to three orders of magnitude latency degradation,
which greatly limits the practicality of such systems. There-
fore, designing fault-tolerant virtualization-based systems
without incurring significant latency and overhead still re-
mains an open research question, and a novel approach is
needed before such systems can be widely adopted in the
production environment.

3 SYSTEM OVERVIEW

Given the limitations of prior work, we first illustrate the
design principles of a system that can overcome these limi-
tations in providing virtualization-based fault tolerance. We
then present the system architecture of Phantasy, a system
we design and develop to realize virtualization-based fault
tolerance without incurring significant overhead in latency.

3.1 Design Principles

As we discussed in Section 2, the overhead of tracking
dirty pages and the long sequential dependency are the two
limiting factors for prior work. To realize a virtualization-
based fault-tolerant system that can be widely deployed in
the production environment, we need to meet the following
design goals:

• Lower the dirty page tracking overhead.
• Shorten the sequential dependency in checkpointing

execution.

To lower the high overhead of tracking dirty pages in the
software stack, we explore other efficient options and find
the Page-Modification Logging (PML) technology available
on the latest commodity Intel processors to be the perfect
candidate. PML is an enhancement for the VMM to provide
hardware-assisted monitoring of memory pages modified
during the VM execution. Because the monitoring logic is
implemented in the hardware, the overhead for tracking

dirty pages is much lower than doing it in the software
stack.

To shorten the sequential dependency in checkpoint
VM execution, we investigate a fundamentally different
approach by asynchronously prefetching dirty pages using
a pulling model. Instead of waiting for all the dirty pages to
checkpoint at the end of each epoch, we design a system to
speculatively prefetch the dirty pages right after they have
been modified by proactively pulling them to the secondary
VM without interrupting the execution of the primary VM.
Consequently, only the dirty pages that have not been
properly prefetched by the secondary VMM need to be
checkpointed, while the majority of the dirty pages have
already been prefetched to the secondary VM as we will
demonstrate later in the paper. This significantly reduces
the number of dirty pages that need to be checkpointed
and transmitted, which directly shortens the sequential
portion of the checkpoint process. Moreover, the shortened
latency of generating and transmitting checkpoints in turn
allows the duration of each epoch to be shortened (i.e., no
longer need to amortize the overhead of generating and
transmitting the checkpoint as much), which further reduces
the network latency for latency-sensitive applications as the
time the network packets need to be buffered is reduced.

3.2 System Architecture

To realize these design principles with strict correctness
requirements, we design Phantasy as illustrated in Fig. 2.
Phantasy currently focuses on providing FT in a LAN en-
vironment by seamless failover in the event of hardware
fail-stop failures [7] (e.g., power supply, memory, proces-
sor, or PCIe link failure). The system is composed of five
components as highlighted in orange boxes in Fig 2: the
Controller, the Checkpoint Saver/Loader, the Prefetcher, the
Dirty Pages Logger and the Network Buffer. The Controller
periodically sends keep-alive messages to the secondary
VMM to detect system failures, and engages the recovery
procedure by redirecting execution to the secondary VM
when failures are detected. During each epoch of VM ex-
ecution:

• The Dirty Pages Logger tracks the dirty pages lever-
aging the hardware-assisted PML technology at real-
time.

• The Prefetcher running on the secondary VMM
speculatively prefetches the dirty pages the Dirty
Pages Logger has already recorded by asynchronously
pulling them without interrupting the primary VM
execution. The reason why these prefetches are
“speculative” is because these pages might be modi-
fied again after the prefetch, in which case they will
be prefetched again or transmitted in the checkpoint.

• The Network Buffer buffers all the network packets
within the duration of each epoch.

At the end of each epoch:

• The Checkpoint Saver generates a checkpoint based
on which pages remain “dirty” (i.e., has not been
properly prefetched by the Prefetcher), which will
then be transmitted to the secondary VM.

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2865943, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, X 201X 5

• The Controller resumes primary VM execution after
the Checkpoint Saver finishes generating the check-
point.

• Once the checkpoint has been successfully transmit-
ted to the secondary VMM, the Checkpoint Loader will
apply the received checkpoint to the secondary VM.

• The network packets stored in the Network Buffer
will be released when the Controller receives the
acknowledgement for successfully transmitting the
previous checkpoint.

4 ASYNCHRONOUS DIRTY PAGE PREFETCHING

As described in Section 3, the key to overcome the limi-
tations of prior work is the capability of asynchronously
prefetching dirty pages in parallel with the primary VM exe-
cution to shorten the sequential dependency of constructing
and transmitting the checkpoints. To realize this, we need a
mechanism to asynchronously pull memory pages, as well
as an algorithm to determine the “right” pages to prefetch
(i.e., the dirty pages that no longer need to be checkpointed
if prefetched). Therefore, we break this section down into
the following two topics.

• The mechanism to allow the secondary VMM to pull
memory pages asynchronously without interrupting
the primary VM execution (Section 4.1).

• The mechanism to determine which memory pages
to pull to maximize the prefetch precision (i.e., the ra-
tio between pages no longer need to be checkpointed
once prefetched and total number of prefetched
pages), efficiently shortening the sequential depen-
dency (Section 4.2).

We then put these mechanisms together and present the
detailed workflow of Phantasy during normal execution
(Section 4.3) and how it provides fault tolerance in the event
of hardware failures (Section 4.4).

4.1 Asynchronous Memory Page Pulling
To shorten the sequential dependency of constructing and
transmitting the checkpoints, we first need a mechanism
to pull memory pages from the primary VM in an asyn-
chronous fashion without interrupting its execution. In this
section, we present the mechanism we use in Phantasy, and
describe the specific prefetching protocol, which is designed
to be generic and VM-agnostic.

To facilitate asynchronous memory page pulling, we
leverage the direct remote memory access provided by
RDMA, which completely bypasses the CPU and OS kernel
of the host system and thereby can be done entirely in
parallel with the primary VM execution. In addition, RDMA
also offers zero-copy, low latency, and high throughput
communication [18], [19], which makes it a great candidate
as the underlying foundation of the asynchronous memory
page pulling mechanism.

Specifically in Phantasy, the secondary VMM pulls mem-
ory pages from the primary VM by issuing one-sided READ
verb offered by RDMA. As opposed to SEND and RECV
verbs, which are two-sided, READ and WRITE verbs are
one-sided, which allows the secondary VMM to drive the
remote memory access entirely without any involvement of

the primary VM. What this means is the primary VM can
continue its execution uninterrupted while the secondary
VMM pulls memory pages in parallel. Moreover, one-sided
verbs typically provide lower communication latency and
higher throughput compared to two-sided ones, as demon-
strated by prior works in leveraging RDMA for VM migra-
tions and replication [12], [20], [21].

4.2 Dirty Page Prediction

With the asynchronous memory page pulling mechanism,
the secondary VMM can prefetch memory pages without in-
terrupting the primary VM. However, it still needs to deter-
mine which memory pages to prefetch without consulting
with the primary VM, because prefetching pages that are not
“dirty” is not going to shorten the sequential dependency
as the number of dirty pages that need to be checkpointed
stays the same. In addition, when to prefetch is also critical
for constructing an efficient prefetching mechanism, because
prefetching dirty pages that will be written again within the
same epoch cannot reduce the size of the checkpoints. This
section discusses the mechanism we leverage in Phantasy to
maximize the prefetching efficiency by precisely predicting
the dirty pages.

Initially, we try to tackle this challenge the same way
as cache prefetcher, which actively predicts memory pages
are likely to be dirty based on past patterns. We experiment
with several state-of-the-art memory access prediction mod-
els including multi-level dirty page caches and a Markov
model-based machine learning algorithm [22]. However,
we find the prediction accuracy is too low even with the
best model (i.e., about 12%) to provide a non-negligible
performance improvement.

We then look into the techniques proposed by prior
work in obtaining page modification information, where
the majority of the systems [6], [9] tracks dirty pages by
write-protecting all memory pages. During each epoch, a
VM exit is triggered to trap into the VMM to mark the
page dirty whenever a memory write operation occurs,
which is extremely time-consuming and introduces signifi-
cant performance overhead. Recent work has also sought to
leverage extended page table (EPT), an emerging technology
available on Intel processors that contains dirty flags of the
page table [23], [24], [25]. However, it is still required to
traverse the entire EPT to gather all the leaf entries where
the dirty flag is set, which is still too expensive for predicting
dirty pages to prefetch.

To address this challenge, we then construct our dirty
page prediction mechanism using the PML technology [16]
on commodity Intel processors, which is a hardware-
assisted enhancement to allow the VMM directly moni-
toring the modified memory pages during VM execution.
When PML is enabled, each memory write will automati-
cally generate an entry in a pre-allocated in-memory buffer,
which contains the guest-physical address (GPA) of the
write. The pre-allocated buffer is composed of 512 64-bit
entries, where each entry references the GPA of a modified
page.

Based on PML, Phantasy implements the Dirty Page
Logger in KVM to obtain the page modification information
by periodically checking the GPAs stored in the PML buffer.

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2865943, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, X 201X 6

Primary VMM Secondary VMM

Pause VM

Generate Checkpoint

Resume VM

Send Checkpoint

Recv Prefetching Info

Recv Checkpoint

Pull Dirty Page info

Prefetch Dirty Pages

Send Prefetching Info

Apply Checkpoint

Recv Signal ?Send Stop Signal
No

Yes

RDMA READ

RDMA READ

Fig. 3: The workflow of Phantasy for asynchronously
prefetching dirty pages to shorten the sequential depen-
dency of constructing and transmitting checkpoints.

It then stores the information in a dirty page bitmap mapped
between user and kernel space by mmap(). To avoid locking,
a new bitmap is generated each time and indexed by a
timestamp so both primary VMM and secondary VMM are
able to identify which bitmap it is and reference all the
bitmaps in the same order. All these bitmaps are stored
in a specified area of primary host’s memory which has
already been mapped into user space and registered to
enable remote read access. As a result, the secondary VMM
can now directly read all the dirty page bitmaps entirely
asynchronously from the user space of the primary host via
RDMA READ operations. With these bitmaps, Phantasy can
simply try to prefetch all the memory pages that are already
dirty instead of predicting which ones are likely to be dirty,
which significantly improves the precision and efficiency
of the prefetches. Note that the secondary VMM may not
have enough time before the end of the epoch to prefetch
all the dirty pages and some already prefetched pages may
be written and become dirty again even with multi-round
prefetching, so the remaining dirty pages still need to be
transmitted in the checkpoints.

4.3 Putting it Together

With both the mechanisms for pulling memory pages asyn-
chronously and predicting dirty pages, we are able to de-
sign and develop Phantasy, a system that asynchronously
prefetches dirty pages without interrupting the primary VM
to shorten the sequential dependency of constructing and
transmitting the checkpoints. In this section, we present the
detailed workflow of our system.

Fig. 3 illustrates the workflow of Phantasy, in which
the novel steps we introduce in this paper are highlighted

in red. Specifically, the primary and secondary VMMs go
through the following steps.

1) The secondary VMM periodically checks if there are
any new dirty pages generated on the primary VM
by checking the dirty page bitmaps through RDMA
READ operations.

2) If there are any new dirty pages, the secondary
VMM will pull the dirty pages, whose GPAs can
be obtained by taking the union of all the dirty page
bitmaps, again through RDMA READ accesses.

3) Once all the dirty pages identified by the previous
check on the dirty page bitmaps have already been
prefetched, Phantasy repeats the same process from
Step 1 to prefetch the newly written dirty pages.
Note the secondary VMM might be able to finish
multiple rounds of prefetches within the duration
of each epoch.

4) At the end of each epoch, the primary VMM will
first send a stop signal to the secondary VMM to
stop prefetching and also pause its own execution.

5) Once the secondary VMM receives the stop signal,
it stops prefetching and sends the primary VMM
the information about which pages have already
been prefetched. This is needed because the last
prefetch might not have been completed by the
time the secondary VMM receives the signal, so the
remaining pages still need to be transmitted in the
checkpoint.

6) The primary VMM generates a new checkpoint
based on the received prefetching information and
transmits it to the secondary VMM.

7) Once the new checkpoint has been sent out to the
secondary VMM, the primary VM can continue
execution, and repeats from Step 1.

8) Once the secondary VMM has successfully received
the latest checkpoint, it will send back an acknowl-
edgement to the primary VMM.

9) After the primary VMM receives the acknowledge-
ment for successfully transmitting the checkpoint, it
will release the buffered outgoing packets.

4.4 Failure Recovery

Phantasy periodically sends keep-alive messages from the
primary VMM to the secondary VMM, and detects failures
when the secondary VMM does not receive five successive
keep-alive messages. Once the failure has been detected, the
secondary VM immediately takes over the execution using
the contexts of the most recent checkpointed state.

To resume execution from exactly the most recent check-
point, the secondary VMM does not prefetch the dirty pages
directly to the VM memory at real-time, otherwise, the
secondary VM might end up being states that are slightly
ahead of the last checkpoint since some dirty pages have
already been prefetched. Instead, a pre-allocated buffer is
used to store these dirty pages temporarily before they can
be applied when the next checkpoint has been successfully
received.

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2865943, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, X 201X 7

Secondary Host

A’ B’

Checkpoint (i)

Checkpoint (i)

A’ B’

A’’ B C’

C

VM’s Memory

A’ B’ C

A’’ B’ C’

Undo Log (i)

A’ B’

A’’ B’ C’

C

Primary Host

Checkpoint (i+1)

D’

Undo Log (i-1)

Undo Log (i-1)

...

...

D

VM’s Memory

A B C D

VM’s Memory

D

VM’s Memory

D

A’’ B’ C’

VM’s Memory

D’

VM’s Memory

D

E
p

o
ch

(i
)

... ...
P

a
u

se
(i

)
E

p
o

ch
(i

+
1

)
P

a
u

se
(i

+
1

)
…

Fig. 4: Double buffering and undo logging in Phantasy.

5 OPTIMIZATIONS

On top of the asynchronous prefetching dirty page prefetch-
ing methodology, we also implement three optimizations
to further improve the system performance. In this section,
we first present the double buffering and undo logging we
leverage to reduce the overhead of applying dirty pages
on the secondary VM (Section 5.1). We then describe our
priority-based prefetching algorithm that prioritizes the
“write-cold pages” over “write-hot pages” to improve the
prefetching efficiency especially for memory-intensive ap-
plications (Section 5.2). Last but not the least, we compress
the work completion messages of RDMA READ verbs to
further reduce the prefetching latency (Section 5.3).

5.1 Double Buffering and Undo Logging
As discussed in Section 4.4, the prefetched dirty pages
cannot be directly applied to the secondary VM’s memory
in real-time, otherwise we will not be able to start execution
exactly at the last checkpoint in the event of hardware
failure. However, naively managing the buffer can make
applying checkpoints quite costly in terms of performance,
because all the dirty pages need to be copied at least twice
(i.e., once to the buffer and once to the secondary VM mem-
ory). To address this issue, we leverage double buffering
to swap two buffers (i.e., shown as the blue and red boxes
on the right-hand side in the figure) between undo log and
checkpoint as illustrated in Fig. 4.

Phantasy manages two buffers on the secondary host:
one is used to help store the latest checkpoint, and the other
buffers the most recent undo state that can be restored in
the event of failure. During each epoch, the dirty pages
prefetched by the secondary VMM will be stored directly
into the VM memory. If the corresponding page is already
buffered in the checkpoint buffer, nothing else needs to
be done since we can restore its previous state using the

checkpoint buffer. Otherwise, the current state of the page
needs to be written to the checkpoint buffer. After each
epoch, the two buffer will be swapped (i.e., the previous
checkpoint buffer will become the new undo log buffer
and vice versa). The new dirty pages transmitted in the
checkpoint will be stored in the new checkpoint buffer, and
the undo log will contain the states of all the necessary pages
to resume execution at the state right after applying the
previous checkpoint. For instance, Fig. 4 demonstrates an
example of this procedure.

• During the pause(i) after the end of epoch(i), the
checkpoint containing dirty pages (denoted in or-
ange boxes) A′ and B′ is stored in the blue buffer,
which is serving as the checkpoint buffer at this
point.

• During the next epoch(i + 1), the secondary VMM
asynchronously prefetches the new dirty pages A′′

and C ′. A′′ can be directly written to memory be-
cause its previous state A′ is already in checkpoint(i)
stored in the blue buffer. However, the current state
of page C will need to be written to checkpoint(i)
before we can apply C ′ to the memory since it has
not been buffered previously.

• At the next pause(i + 1) after epoch(i + 1), the red
buffer and blue buffer will be swapped, where the
blue buffer becomes the new undo log(i) and the
red buffer becomes the new checkpoint(i + 1). Now
the undo log(i) in the blue buffer contains the states
of the relevant pages after applying checkpoint(i),
which can be restored if a failure occurs in pause(i+
1). Meanwhile, the new dirty page D′ transmitted in
the checkpoint will be stored in the new checkpoint
buffer checkpoint(i+1) first, and the checkpoint(i+1)
will be applied to the secondary VM’s memory in
pause(i+ 2).

5.2 Priority-based Prefetching
During each epoch, Phantasy tries to prefetch as many dirty
pages as possible whenever the primary VM marks them
in the dirty page bitmaps. However, it is not always the
case that Phantasy will have enough time to prefetch all the
dirty pages, especially for write-heavy memory-intensive
applications that generate large quantities of dirty pages.
When not all the dirty pages can be prefetched in time,
some of the dirty pages might never get pulled by the
secondary while other frequently over-written pages might
have already been prefetched multiple times within the
same epoch even though only the last prefetch is actually
useful. This can result in inefficient prefetches as we waste a
large amount of resource fetching the same pages over and
over again and leave the rest of the pages untouched.

To quantify this observation, we measure the modifica-
tion frequency of each memory page within each epoch,
which is the number of rounds the same page is marked
as dirty per epoch. We find that at least 21.51% pages
are marked as dirty throughout the entire epoch, while
44.47% pages are only marked once per epoch. We refer
these frequently marked dirty pages as “write-hot pages”
and the others “write-cold pages”. Prefetching the “write-
hot pages” multiple times within the same epoch wastes a

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2865943, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, X 201X 8

large amount of resource, which we could and should have
used to prefetch those “write-cold pages”. Based on this
insight, we develop a priority-based prefetching algorithm
that prioritizes “write-cold pages” over “write-hot pages” to
further improve the prefetching efficiency.

Specifically, Phantasy prioritizes the pages which are the
least recently modified. This optimization requires keeping
track of when pages were modified. Therefore, Phantasy
maintains statistics about the memory page’s last-modified
timestamp on the secondary VMM. In this revised design,
the secondary VMM performs each round of prefetching
at a fixed frequency. At the beginning of each round of
prefetching, the secondary VMM sorts the dirty pages in
ascending order according to the last-modified timestamp if
there is not enough time to prefetch all the dirty pages based
on estimation, and prefetches dirty pages in the same order
to prioritize the pages that are the least recently modified
(i.e., “write-cold pages”). If the secondary VMM estimates
all the dirty pages can be prefetched in time, it skips the
sorting to save resources. The time interval of each round of
prefetching is set to 1ms by default and can be configured to
any value through the control interface. Phantasy performs
each round of prefetching at a fixed frequency since the im-
pact of prefetching frequency on performance is negligible.
Particularly, if there is time left after prefetching all dirty
pages of a round, the secondary VMM will continue the
unfinished prefetching of previous rounds.

5.3 Using RDMA READ with Unsignaled Completion

By default, each work request (WR) generates a work
completion (WC) signal to notify completion when using
RDMA verbs. However, handling large numbers of WCs
can be resource consuming and introduce additional latency.
Specifically, polling and checking the WCs from the comple-
tion queue consumes additional CPU cycles, and generating
WCs also consumes precious resource on RDMA devices.

To reduce this overhead, Phantasy issues RDMA
READ verbs with unsignaled completion when performing
prefetching. With the unsignaled completion mechanism,
the READ operations will no longer generate WCs for
completion [26]. Meanwhile, transmission failures can still
be detected as any error will yield a WC to provide the
error message [27].

The unsignaled completion mechanism does not affect
the correctness of our prefetching protocol because the
prefetching operations within a round update different
memory addresses without overlapping, and the memory
regions that contain the prefetched pages will not be reused
or destroyed. Particularly, to control the speed of prefetching
and to avoid depleting completion queue resources, we
generate a WC and wait for its acknowledgement after every
fifty RDMA READs.

6 EVALUATION

In this section, we first describe our evaluation methodology
(Section 6.1) and profile Phantasy running in action (Sec-
tion 6.2). We then evaluate the effectiveness of Phantasy in
providing virtualization-based fault tolerance by comparing
against prior work in the following aspects.

• Reducing performance overhead for batch process-
ing applications (Section 6.3).

• Reducing latency for latency-sensitive applications
(Section 6.4).

6.1 Experimental Setup

TABLE 1: Specification of the experimental platform.

Specification
Server Dell OptiPlex 7470 Workstation

Processor Intel Core i5-6500 @ 3.2GHz (4-core, 6MB LLC)
DRAM 8GB @ 2133MHz

InfiniBand NIC Mellanox ConnectX 40Gbps InfiniBand (via PCIe 3.0 x8)
InfiniBand Switch Mellanox SX6005 56Gbps InfiniBand Switch

Ethernet NIC Intel I219-LM 1Gbps NIC
Ethernet Switch TP-Link 8-Port Gigabit Ethernet Switch

Kernel Version 4.4.62
QEMU Version 2.3.50

All the experiments in this section are conducted on the
experimental platform described in Table. 1. The VMs are
configured with 2 virtual CPUs and 2GB memory running
Ubuntu 14.04 with a kernel version at 3.13.0. We run one
VM on the primary host to minimize the impact of running
multiple VMs on the same host. However, Phantasy can
protect the specified VM running concurrently with other
VMs, as it can distinguish the dirty pages generated by the
protected VM from the dirty pages generated by other VMs.

To cover a wide range of applications in our evalua-
tion, we use 25 benchmarks from PARSEC [28], SPLASH-
2 [29], and OLTP-Bench [30] representing three categories of
applications, namely compute-intensive batch applications,
memory-intensive batch applications, and latency-sensitive
applications, as listed in Table 2. Specifically, we use sim-
large or native input for all benchmarks from PARSEC [28]
and SPLASH-2 [29]. To represent memory-intensive batch
applications, we use kernel-build that compiles Linux ker-
nel 3.13.1 with the default configuration, pbzip2 that com-
presses 111MB of Linux source code, and pfscan that
searches the word “error” in Linux source code. For latency-
sensitive applications, we use six benchmarks from OLTP-
Bench [30], because they are sensitive to latency degradation
and can also benefit significantly from fault tolerance due to
the criticality of online transaction processing.

For all experiments in this section, we compare our
system against Micro-Checkpointing (MC) [31], [32], which
is the state-of-the-art virtualization-based fault-tolerant sys-
tem implemented on QEMU based on Remus [6]. We
chose MC for comparison because, first, MC is designed
and optimized for RDMA-based systems [31] , therefore,
it has shown relatively good performance in an RDMA
environment; second, MC is implemented based on the
same platform as Phantasy, which facilitates an accurate

TABLE 2: Benchmarks used in the evaluation.

Category Benchmarks

Compute-intensive batch

blackscholes, bodytrack, canneal, ferret, flu-
idanimate, freqmine, streamcluster, swaptions,
vips, x264 from PARSEC [28]
barnes, cholesky, fft, fmm, radix, volrend from
SPLASH-2 [29]

Memory-intensive batch kernel-build, pbzip, pfscan

Latency-sensitive TPC-C, Twitter, Voter, SmallBank, TATP, YCSB
from OLTP-Bench [30]

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2865943, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, X 201X 9

0 200 400 600 800
Time (ms)

0

500

1000

1500

2000
B

an
dw

id
th

 U
sa

ge
 (M

B
/s

)
MC Phantasy

Fig. 5: The RDMA bandwidth usage of Phantasy and MC as
a function of time for a 900ms segment of execution of x264
from PARSEC [28] at 100ms epoch size (with a sampling
interval of 12ms).

and unbiased direct comparison in terms of performance.
In addition, we also present the overhead compared to the
native VM execution without any fault tolerance capability.

6.2 Phantasy in Action
To understand the implication of the asynchronous prefetch-
ing mechanism we develop, we first characterize the RDMA
bandwidth usage of Phantasy and MC over time. As shown
in Fig. 5, we profile the bandwidth usage of Phantasy
and MC for a 900ms segment of execution of x264 from
PARSEC [28], where the epoch size is configured at 100ms.

MC incurs a bandwidth spike every 100ms because
all the dirty pages generated in the previous epoch can
only be checkpointed and transmitted to the secondary VM
sequentially at the end of the epoch. On the other hand,
the bandwidth usage of Phantasy stays relatively constant.
During each epoch, the dirty pages are asynchronously
prefetched by the secondary VM, resulting in a bandwidth
usage at about 500MB/s. At the end of each epoch, because
the majority of the dirty pages have already been prefetched,
the number of dirty pages that need to be checkpointed and
transmitted is much lower, drastically reducing the proba-
bility of incurring large spikes in the bandwidth usage like
MC. More importantly, it significantly reduces the length
of the sequential dependency for generating, transmitting,
receiving acknowledgement for the checkpoints and releas-
ing the buffered network packets, which can directly reduce
the performance overhead as well as the query latency for
latency-sensitive applications.

6.3 Overhead for Batch Processing Applications
In this section, we first evaluate the end-to-end overhead
of Phantasy compared to MC (Section 6.3.1). To further un-
derstand the source of the overhead reduction, we analyze
the reduction in VM exits (Section 6.3.2) and in dirty pages
(Section 6.3.3).

6.3.1 Reduction in End-to-End Overhead
To evaluate the end-to-end overhead introduced by MC and
Phantasy compared to the baseline native VM execution, we
measure the execution time of the compute-intensive and
memory-intensive batch applications in Table 2 for 50 times
for all three configurations. We also vary the size of each
epoch for MC and Phantasy to measure its impact.

The results are shown in Fig. 6, in which the y-axis
denotes the overhead of MC and Phantasy at different epoch
sizes compared to the native VM execution (i.e., higher bars
represent more overhead). As shown in the figure, Phantasy
significantly reduces the end-to-end overhead compared to
MC, which is the state-of-the-art prior work. Across all
benchmarks and three different epoch sizes, Phantasy can
reduce the overhead drastically by 38.88% on average.

We also observe that Phantasy achieves larger improve-
ment on I/O intensive applications (i.e., kernel-build, pbzip,
pfscan) than CPU intensive applications. On average, Phan-
tasy incurs 35.24% less overhead than MC for CPU intensive
applications, and 58.33% less overhead for I/O intensive
applications. This is because I/O intensive applications tend
to have much more frequent memory writes, translating
to more dirty pages, thereby more VM exits. By asyn-
chronously prefetching these dirty pages, our system can
significantly reduce the number of dirty pages need to be
transferred (i.e., checkpoint size) during the sequential exe-
cution. Instead of tracking the dirty pages in the software-
stack, which causes frequent VM exits, Phantasy leverages
PML to record the dirty pages in hardware, further reducing
the overhead caused by VM exits.

In addition to the amount of memory writes, the locality
of memory writes also has an impact on the overhead
reduction Phantasy achieves. If the application often writes
to different memory pages (i.e., cold pages, high reuse
distance), our prefetching mechanism will be more effective
because the already prefetched pages are less likely to be
written again. For example, although cholesky does not
have a lot of memory writes, it does not write to the same
pages very often, resulting in a relatively large overhead
reduction (i.e., 50.37% at 5ms epoch size).

Moreover, the page size is another key factor that
can influence the performance of Phantasy since using
smaller page size can reduce the overhead of transmitting
dirty pages. A further experiment shows that using huge
pages [33] (2MB page size) increases the performance over-
head by 9.55% on average compared to using 4KB page size.
However, we should also note that utilizing smaller pages
may introduce additional overhead since higher amount of
memory address translations will be required [34]. There-
fore, we choose 4KB as the default page size in Phantasy.

In summary, Phantasy significantly reduces the over-
head of virtualization-based fault tolerance by lowering the
dirty page tracking overhead and shortening the sequential
dependency in checkpointing execution. To further inves-
tigate the overhead reduction achieved by Phantasy, we
analyze the reduction in VM exits (Section 6.3.2) and in dirty
pages (Section 6.3.3).

6.3.2 Reduction in VM Exits
Fig. 7 presents the reduction in the amount of VM exits. As
we can see in the figure, Phantasy significantly reduces the
VM exits by 88.40% on average. The reduction in VM exits
decreases as the size of each epoch increases as illustrated
in the figure. The reason is MC invokes only one VM exit
for multiple writes to the same dirty page within the same
epoch, which means the rate of VM exits generated drops
as the epoch size grows. At 5ms epoch size, Phantasy can
reduce the VM exit by 93.94%. As we increase the epoch

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2865943, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, X 201X 10

blackscholes

bodytra
ck

canneal
ferre

t

fluidanimate

freqmine

stre
amcluste

r

swaptions
vips

x264
barnes

cholesky fft fmm
radix

volrend

kernel-build
pbzip

pfscan

Benchmarks

0%

50%

100%

150%

200%
O

ve
rh

ea
d

MC@5ms
Phantasy@5ms

MC@10ms
Phantasy@10ms

MC@20ms
Phantasy@20ms

Fig. 6: The overhead of MC and Phantasy at different epoch sizes compared to the native VM execution (i.e., higher bars
represent more overhead).

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k
ca

nn
ea

l
fe

rr
et

flu
id

an
im

at
e

fr
eq

m
in

e
st

re
am

cl
us

te
r

sw
ap

tio
ns

vi
ps

x2
64

ba
rn

es
ch

ol
es

ky ff
t

fm
m

ra
di

x
vo

lr
en

d
ke

rn
el

-b
ui

ld
pb

zi
p

pf
sc

an

Benchmarks

0%

50%

100%

150%

VM
 E

xi
ts

 R
ed

uc
tio

n 5ms 10ms 20ms

Fig. 7: The reduction in the number of VM exits achieved by
Phantasy compared to MC.

size to 10ms and 20ms, the reduction decreases to 88.41%
and 82.86%, respectively.

If we compare the absolute numbers of VM exits, we
can find that Phantasy reduces more VM exits for I/O in-
tensive applications than CPU intensive applications, which
explains why they tend to benefit a higher end-to-end over-
head reduction. Because I/O intensive applications tend to
generate more memory writes and systems like MC have to
invoke one VM exit for each dirty page to track them, they
naturally experience higher VM exits reduction.

6.3.3 Reduction in Dirty Pages in Checkpoints

In addition to VM exits, we find Phantasy can significantly
reduce the number of dirty pages need to be transmitted to
the secondary VM in checkpoints as demonstrated in Fig. 8.
By asynchronously prefetching the dirty pages identified
by PML, our system will have already transmitted a large
fraction of the dirty pages at the end of each epoch, which
means only the remaining dirty pages need to be transmit-
ted in the next checkpoint. At 5ms epoch size, Phantasy
reduces the number of dirty pages in checkpoints by 51.77%
for CPU intensive applications, and 52.82% for I/O intensive
applications. If we compare the reductions among different
epoch sizes, we can find the reduction increases as the
epoch size grows, because the likelihood that our system
can successfully prefetch each dirty page increases as epochs
become longer, resulting in less dirty pages needed to be

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k
ca

nn
ea

l
fe

rr
et

flu
id

an
im

at
e

fr
eq

m
in

e
st

re
am

cl
us

te
r

sw
ap

tio
ns

vi
ps

x2
64

ba
rn

es
ch

ol
es

ky ff
t

fm
m

ra
di

x
vo

lr
en

d
ke

rn
el

-b
ui

ld
pb

zi
p

pf
sc

an

Benchmarks

0%

20%

40%

60%

80%

100%

D
ir

ty
 P

ag
e

R
ed

uc
tio

n 5ms 10ms 20ms

Fig. 8: The reduction in the number of dirty pages in
checkpoints achieved by Phantasy compared to MC.

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k
ca

nn
ea

l
fe

rr
et

flu
id

an
im

at
e

fr
eq

m
in

e
st

re
am

cl
us

te
r

sw
ap

tio
ns

vi
ps

x2
64

ba
rn

es
ch

ol
es

ky ff
t

fm
m

ra
di

x
vo

lr
en

d
ke

rn
el

-b
ui

ld
pb

zi
p

pf
sc

an
Benchmarks

0%

50%

100%

150%

O
ve

rh
ea

d

PML-based MC@5ms Phantasy@5ms

Fig. 9: The end-to-end overhead of Phantasy compared to
PML-based MC.

transmitted in the checkpoint. At 10ms epoch size, Phantasy
can reduce the dirty pages by 53.14% for CPU intensive
applications, and 62.31% for I/O intensive applications. As
we increase the epoch size to 20ms, the reduction grows to
58.95% and 69.41% for CPU intensive applications and I/O
intensive applications respectively.

6.3.4 Benefits of Innovations and Optimizations

To show the performance improvement contributed by PML
and the asynchronous prefetching mechanism separately,

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2865943, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, X 201X 11

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k
ca

nn
ea

l
fe

rr
et

flu
id

an
im

at
e

fr
eq

m
in

e
st

re
am

cl
us

te
r

sw
ap

tio
ns

vi
ps

x2
64

ba
rn

es
ch

ol
es

ky ff
t

fm
m

ra
di

x
vo

lr
en

d
ke

rn
el

-b
ui

ld
pb

zi
p

pf
sc

an

Benchmarks

0%

20%

40%

60%

80%

100%
O

ve
rh

ea
d

Phantasy w/o optimizations
Phantasy w/ double buffering

Phantasy w/ double buffering & unsignaled completion
Phantasy w/ all optimizations

Fig. 10: The end-to-end overhead of Phantasy with different
optimizations (at 5ms epoch size).

we evaluate the end-to-end overhead of Phantasy com-
pared to the PML-based MC which utilizes PML instead of
software-based approach for dirty pages tracking. Fig. 9 il-
lustrates that compared with PML-based MC, Phantasy can
still reduce the overhead drastically by 26.98% on average.
As a comparison, Phantasy incurs 38.88% less overhead than
the original MC, which means the performance improve-
ment contributed by our asynchronous prefetching is much
greater than PML.

Fig. 10 quantifies the performance improvement due to
each of Phantasy’s optimizations. The results show that
priority-based prefetching reduces the overhead by 3.6% on
average, while unsignaled completion and double buffering
contribute 1.2% and 1.35% improvement, respectively. The
impact of unsignaled completion is highly dependent on
the amount of the dirty pages that the secondary VMM can
prefetch, which explains why applications like bodytrack
and streamcluster, which generate less dirty pages, benefit
less from this unsignaled completion.

6.4 Latency for Latency-Sensitive Applications

Fault tolerance is critical for many latency-sensitive ap-
plications, especially ones that are mission-critical (e.g.,
database management systems, network functions virtu-
alization services, and data caching services). However,
the latency degradation introduced by the state-of-the-art
virtualization-based fault-tolerant systems is so high as we
illustrated in Section 2 that it is impractical to deploy such
systems.

In this section, we evaluate the feasibility of deploy-
ing Phantasy for latency-sensitive applications by measur-
ing the latency degradation and comparing to MC (Sec-
tion 6.4.1). We then analyze in-depth the reduction achieved
by Phantasy in the number of VM exits (Section 6.4.2) and
in the number of dirty pages in checkpoints (Section 6.4.3).

6.4.1 Reduction in Query Latency
To measure the query latency, we measure six latency-
sensitive applications from OLTP-Bench [30] running on
MySQL database, which is configured to run on MC and
Phantasy for comparison. The measured query latency is
shown in Fig. 11, the x-axis represents the timeline (i.e., each

experiment runs for 300 seconds) and the y-axis shows the
latency reported by OLTP-Bench [30].

On average, the Phantasy improves the query latency
by 85.85% compared to MC. Specifically, MC is not able to
sustain the queries for four out of the six applications (i.e.,
Voter in Fig. 11a, SmallBank in Fig. 11d, TATP in Fig. 11e,
YCSB in Fig. 11f), as demonstrated in the initially increasing
and quickly plateaued latency time series (i.e., queries start
to time out as the system is overutilized). Although MC is
able to sustain the queries for the other two applications (i.e.,
TPC-C in Fig. 11b and Twitter in Fig. 11c), the latency is quite
bursty. For instance, the query latency for TPC-C increases
from 250ms all the way up to 900ms (i.e., 3.6× degradation)
around 150s in Fig. 11b. This is because of the aggravating
queueing effect we discussed in Section 2, where the length
of each epoch keeps growing when the checkpointing size
increases and longer epoch in turn results in larger check-
points.

On the contrary, Phantasy is able to sustain the incoming
queries for all six applications at a much lower query latency
(i.e., 85.85% reduction). Even for the worst case scenario
(TPC-C in Fig. 11b), Phantasy can reduce the average latency
by 30.84% compared to MC. In addition to the reduction
in query latency, we can also observe that Phantasy can
significantly reduce the variance of query latency, which is
critical for latency-sensitive applications [14].

In summary, Phantasy realizes virtualization-based fault
tolerance at a much lower latency, particularly 85.85%
reduction compared to MC, which makes such systems
practical for latency-sensitive applications. We then further
analyze the reduction our system can achieve in the number
of VM exits (Section 6.4.2) and dirty pages per checkpoint
(Section 6.4.3).

6.4.2 Reduction in VM Exits
Fig. 12 presents the number of VM exits per second Phan-
tasy is able to reduce compared to MC. The reduction for
TPC-C is lower because it is much more compute intensive
than the other five applications, so the total number of
VM exits it generates is lower than the other applications.
The results show that tracking dirty pages using PML in
hardware to reduce the number of VM exits has a direct
positive impact on the query latency for latency-sensitive
applications.

6.4.3 Reduction in Dirty Pages
We then further characterize the reduction of dirty pages
for these six latency-sensitive applications as shown in Fig-
ure 13. In each figure, the y-axis on the left and the orange
line shows the query latency over time, and the y-axis on
the right and the dashed red line represents the percentage
of dirty page reduction of Phantasy comparting to MC.
For example, SmallBank shown in Fig. 13d experiences a
latency around 120ms (i.e., orange line) with a few spikes
and a reduction of around 50% (i.e., dashed red line) in
dirty pages running on Phantasy. In aggregate, Phantasy is
able to reduce the dirty pages that need to be transmitted
in the checkpoints by 55.16%. Note that MC cannot sustain
the queries and is timing out these queries for four out of
the six applications, namely Voter in Fig. 13a, SmallBank in
Fig. 13d, TATP in Fig. 13e and YCSB in Fig. 13f.

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2865943, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, X 201X 12

0 50 100 150 200 250 300
Time (s)

0

2000

4000

6000

8000
La

te
nc

y
(m

s)

MC
Phantasy

(a) Voter

0 50 100 150 200 250 300
Time (s)

0

200

400

600

800

1000

La
te

nc
y

(m
s)

MC
Phantasy

(b) TPC-C

0 50 100 150 200 250 300
Time (s)

0

500

1000

1500

2000

La
te

nc
y

(m
s)

MC
Phantasy

(c) Twitter

0 50 100 150 200 250 300
Time (s)

0

2000

4000

6000

8000

La
te

nc
y

(m
s)

MC
Phantasy

(d) SmallBank

0 50 100 150 200 250 300
Time (s)

0

1000

2000

3000

4000

La
te

nc
y

(m
s)

MC
Phantasy

(e) TATP

0 50 100 150 200 250 300
Time (s)

0

2000

4000

6000

8000

10000

La
te

nc
y

(m
s)

MC
Phantasy

(f) YCSB

Fig. 11: Comparison of Phantasy and MC in query latency for six latency-sensitive applications from OLTP-Bench [30] (at
5ms epoch size).

Voter
TPC-C

Twitte
r

SmallBank
TATP

YCSB

Benchmarks

0K/s

100K/s

200K/s

300K/s

400K/s

VM
 E

xi
ts

 R
ed

uc
tio

n

Fig. 12: The reduction in the number of VM exits per second
achieved by Phantasy compared to MC.

In addition, we also notice that the query latency and
the dirty page reduction are inversely correlated, where
drops in dirty page reduction often result in latency spikes.
For example, the latency spike at 65s for TATP shown in
Fig. 13e is inversely correlated with the drop in dirty page
reduction, and the decreasing latency during the first 25s
for Twitter shown in Fig. 13c is inversely correlated with the
increasing trend of dirty page reduction. This inverse corre-
lation further confirms our observation that asynchronously
prefetching dirty pages to reduce the number of dirty pages
that need to be transmitted in each checkpoint can directly
reduce the query latency, making such virtualization-based
fault-tolerant systems feasible for latency-sensitive applica-
tions.

7 RELATED WORKS

Researchers have proposed systems to provide extremely
high availability by periodically checkpointing execution of
the primary machine to a secondary replicated machine, so
that the secondary machine can continue execution trans-
parently in the event of machine failures on the primary

machine. Bressoud and Schneider [5] first present and for-
malize the principles and protocols to implement software-
only virtual machine-based fault tolerance systems. Fried-
man, Kama [35] and Napper et al. [36] present an implemen-
tation of such fault-tolerant systems on top of Java virtual
machine. Remus [6] is one of the first systems that makes
this mechanism practical by allowing speculative execution
and asynchronous checkpointing and replication. Lu and
Chiueh [10] also implement a speculative state transfer
mechanism. Compared to their approach, Phantasy lowers
the dirty page tracking overhead by leveraging the PML and
shortens the sequential dependency in checkpointing exe-
cution by investigating a fundamentally different approach
by asynchronously prefetching dirty pages using a pulling
model. Zhu et al. [9], [11] present the idea of read-fault re-
duction and write-fault prediction to reduce the overhead of
logging dirty pages, and introduce the concept of software-
superpage to optimize the memory transfer between vir-
tual machines. Tsao et al. [37] implement an efficient fault-
tolerant system by using SSE instructions to achieve fine-
grained dirty region tracking. VMware vSphere FT [38] is
a commercial enterprise-grade system for providing con-
tinuous availability for applications by periodically taking
incremental checkpoints of the VM states. RemusDB [39] ex-
ercises the idea of building high availability database man-
agement systems using virtual machine checkpointing, and
presents optimizations catered for characteristics of such
applications (i.e., memory intensive and sensitive to network
latency). Tardigrade [13] addresses the same challenge by
encapsulating execution into lightweight virtual machines,
thereby avoiding having to synchronize unnecessary data
between the primary and secondary machines like OS back-
ground tasks. Moreover, recent work [7] have also looked
at synchronizing the primary VM and secondary VM using
lazy checkpoints, which are only generated and applied to
the secondary VM if its output diverges from the primary
VM. Our work differs from such technique fundamentally

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2865943, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, X 201X 13

0 50 100 150 200 250 300
Time (s)

0

50

100

150

200

La
te

nc
y

(m
s)

Latency

0%

20%

40%

60%

80%

100%

R
ed

uc
tio

n
in

 D
ir

ty
 P

ag
es

Reduction in Dirty Pages

(a) Voter

0 50 100 150 200 250 300
Time (s)

0

100

200

300

400

La
te

nc
y

(m
s)

Latency

0%

20%

40%

60%

80%

100%

R
ed

uc
tio

n
in

 D
ir

ty
 P

ag
es

Reduction in Dirty Pages

(b) TPC-C

0 50 100 150 200 250 300
Time (s)

0

250

500

750

1000

1250

1500

La
te

nc
y

(m
s)

Latency

0%

20%

40%

60%

80%

100%

R
ed

uc
tio

n
in

 D
ir

ty
 P

ag
es

Reduction in Dirty Pages

(c) Twitter

0 50 100 150 200 250 300
Time (s)

0

50

100

150

200

La
te

nc
y

(m
s)

Latency

0%

20%

40%

60%

80%

100%

R
ed

uc
tio

n
in

 D
ir

ty
 P

ag
es

Reduction in Dirty Pages

(d) SmallBank

0 50 100 150 200 250 300
Time (s)

0

100

200

300

400

La
te

nc
y

(m
s)

Latency

0%

20%

40%

60%

80%

100%

R
ed

uc
tio

n
in

 D
ir

ty
 P

ag
es

Reduction in Dirty Pages

(e) TATP

0 50 100 150 200 250 300
Time (s)

0

200

400

600

800

La
te

nc
y

(m
s)

Latency

0%

20%

40%

60%

80%

100%

R
ed

uc
tio

n
in

 D
ir

ty
 P

ag
es

Reduction in Dirty Pages

(f) YCSB

Fig. 13: The time series of the query latency and the reduction in dirty pages of six latency-sensitive applications from
OLTP-Bench [30] running on Phantasy.

by providing a different asynchronously communication
channel for transmitting dirty pages, which can be applied
to systems like Remus [6], Kemari [8], and COLO [7] to
further complement their performance.

Moreover, we believe that many other works can po-
tentially benefit from the idea of tracking dirty pages by
leveraging PML and proactively pulling dirty pages through
direct remote memory access via RDMA. For example, live
VM migration faces the exact same technical challenge that
how to efficiently track and transmit all the dirty pages.
In order to achieve live VM migration, all the runtime
states must be transferred from the source to the destina-
tion without disconnecting the client or application [17].
Pre-copy, as a major approach to perform live VM mi-
gration, uses a similar high-level strategy as Phantasy. It
first transfers all the dirty pages from source to destination
in an asynchronous fashion while the VM is still running
on the source. Then, if some pages change, they will be
retransferred. Finally, it stops the source VM and transfers
the remaining dirty pages. This idea was first proposed by
Clark et al. [17]. VMotion [40] is one of the first systems
that can migrate unmodified applications on the unmodified
x86-based OS. To further improve the performance, some
recent works demonstrated the benefit of using InfiniBand
for VM migration [20], [41]. Moreover, to further expand
the utility of live VM migration, some recent works focus
on supporting the transparent, live wide-area migration of
virtual machines [42], [43], [44].

8 CONCLUSION

In this paper, we have made the first attempt to leverage
emerging processor (PML) and network (RDMA) features to
achieve an efficient and low-latency fault tolerance. To real-
ize a virtualization-based fault tolerance system that can be
widely deployed in production environment, we first lower
the dirty page tracking overhead by leveraging the PML.

Then, we shorten the sequential dependency in checkpoint-
ing execution by investigating a fundamentally different
approach by asynchronously prefetching dirty pages using
a pulling model. Instead of waiting for all the dirty pages to
checkpoint at the end of each epoch, with the help of RDMA,
we design an asynchronous pull-based prefetching strategy
to speculatively prefetch the dirty pages that recorded by
PML by proactively pulling them to the secondary VM
without interrupting the execution of the primary VM. By
doing so, we can overlap dirty pages transport with VM exe-
cution, and therefore can potentially mask the vast majority
or even all of the memory state synchronization overhead.
We also discuss three more optimizations to further improve
the system performance. By evaluating our system on 25
real-world applications, we demonstrate that Phantasy can
significantly reduce the performance overhead by 38% on
average, and further reduce the latency by 85% compared
to the state-of-the-art virtualization-based fault-tolerant sys-
tems. Phantasy is now only compatible with shared storage,
such as iSCSI (Internet Small Computer Systems Interface)
and NAS (network-attached storage). In the future, we
intend to extend this work to platforms using separate local
disk. Furthermore, extending Phantasy to support a more
complex failure recovery strategy which can deal with the
case where the secondary VM fails is an interesting research
problem and will be our future research topic.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (Grant No. 61572044 and Grant No.
61170056). The contact author is Zhen Xiao.

REFERENCES

[1] J. Gray and D. P. Siewiorek, “High-availability computer systems,”
Computer, vol. 24, Sept 1991.

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2865943, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, X 201X 14

[2] “Amazon ec2 service level agreement,”
https://aws.amazon.com/cn/ec2/sla/.

[3] D. Bernick, B. Bruckert, P. D. Vigna, D. Garcia, R. Jardine, J. Klecka,
and J. Smullen, “Nonstop R© advanced architecture,” in 2005 In-
ternational Conference on Dependable Systems and Networks, ser.
DSN’05, June 2005.

[4] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Smith,
“Configurable isolation: Building high availability systems with
commodity multi-core processors,” in Proceedings of the 34th An-
nual International Symposium on Computer Architecture, ser. ISCA’07,
2007.

[5] T. C. Bressoud and F. B. Schneider, “Hypervisor-based Fault Toler-
ance,” in Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles, ser. SOSP’95, 1995.

[6] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield, “Remus: High Availability via Asynchronous Virtual
Machine Replication,” in Proceedings of the 5th USENIX Symposium
on Networked Systems Design and Implementation, ser. NSDI’08, 2008.

[7] Y. Dong, W. Ye, Y. Jiang, I. Pratt, S. Ma, J. Li, and H. Guan, “COLO:
COarse-grained LOck-stepping Virtual Machines for Non-stop
Service,” in Proceedings of the 4th Annual Symposium on Cloud
Computing, ser. SOCC’13, 2013.

[8] Y. Tamura, K. Sato, S. Kihara, and S. Moriai, “Kemari: Virtual
machine synchronization for fault tolerance,” in 2008 USENIX
Annual Technical Conference (Poster Session), ser. USENIX ATC’08,
2008.

[9] J. Zhu, W. Dong, Z. Jiang, X. Shi, Z. Xiao, and X. Li, “Improving the
Performance of Hypervisor-Based Fault Tolerance,” in Proceedings
of the 2010 IEEE International Symposium on Parallel Distributed
Processing, ser. IPDPS’10, 2010.

[10] L. Maohua and C. Tzi-cker, “Fast Memory State Synchronization
for Virtualization-Based Fault Tolerance,” in Proceedings of the 2009
IEEE/IFIP International Conference on Dependable Systems Networks,
ser. DSN’09, 2009.

[11] J. Zhu, Z. Jiang, Z. Xiao, and X. Li, “Optimizing the Performance
of Virtual Machine Synchronization for Fault Tolerance,” IEEE
Transactions on Computers, vol. 60, no. 12, Dec. 2011.

[12] B. Gerofi and Y. Ishikawa, “Rdma based replication of multi-
processor virtual machines over high-performance interconnects,”
in 2011 IEEE International Conference on Cluster Computing, ser.
Cluster’11, Sept 2011.

[13] J. R. Lorch, A. Baumann, L. Glendenning, D. T. Meyer, and
A. Warfield, “Tardigrade: Leveraging Lightweight Virtual Ma-
chines to Easily and Efficiently Construct Fault-tolerant Services,”
in Proceedings of the 12th USENIX Conference on Networked Systems
Design and Implementation, ser. NSDI’15, 2015.

[14] J. Dean and L. A. Barroso, “The Tail at Scale,” Commun. ACM, 2013.
[15] Y. Zhang, D. Meisner, J. Mars, and L. Tang, “Treadmill: Attributing

the Source of Tail Latency Through Precise Load Testing and Sta-
tistical Inference,” in Proceedings of the 43rd International Symposium
on Computer Architecture, ser. ISCA ’16, 2016.

[16] Intel Corporation, Intel R©64 and IA-32 Architectures Software Devel-
oper’s Manual, July 2017, no. 325462-063US.

[17] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machines,”
in Proceedings of the 2Nd Conference on Symposium on Networked
Systems Design & Implementation - Volume 2, ser. NSDI’05, 2005.

[18] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen, “Fast in-memory
transaction processing using rdma and htm,” in Proceedings of the
25th Symposium on Operating Systems Principles, ser. SOSP’15, 2015.

[19] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using rdma ef-
ficiently for key-value services,” in Proceedings of the 2014 ACM
Conference on SIGCOMM, ser. SIGCOMM’14, 2014.

[20] W. Huang, Q. Gao, J. Liu, and D. K. Panda, “High performance
virtual machine migration with rdma over modern interconnects,”
in 2007 IEEE International Conference on Cluster Computing, ser.
Cluster’07, 2007.

[21] C. Isci, J. Liu, B. Abali, J. O. Kephart, and J. Kouloheris, “Improv-
ing server utilization using fast virtual machine migration,” IBM
Journal of Research and Development, vol. 55, no. 6, Nov 2011.

[22] D. Joseph and D. Grunwald, “Prefetching using markov predic-
tors,” in Proceedings of the 24th Annual International Symposium on
Computer Architecture, ser. ISCA’97, 1997.

[23] S. Ren, L. Tan, C. Li, Z. Xiao, and W. Song, “Samsara: Efficient
deterministic replay in multiprocessor environments with hard-
ware virtualization extensions,” in 2016 USENIX Annual Technical
Conference, ser. USENIX ATC’16, Jun. 2016.

[24] S. Ren, C. Li, L. Tan, and Z. Xiao, “Samsara: Efficient deterministic
replay with hardware virtualization extensions,” in Proceedings of
the 6th Asia-Pacific Workshop on Systems, ser. APSys ’15, 2015.

[25] S. Ren, L. Tan, C. Li, Z. Xiao, and W. Song, “Leveraging hardware-
assisted virtualization for deterministic replay on commodity
multi-core processors,” IEEE Transactions on Computers, vol. PP,
2017.

[26] Mellanox Technologies, RDMA Aware Networks Programming User
Manual, May 2015.

[27] D. Barak, “Working with unsignaled completions,”
http://www.rdmamojo.com/2014/06/30/working-unsignaled-
completions/.

[28] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Bench-
mark Suite: Characterization and Architectural Implications,” in
Proceedings of the 17th International Conference on Parallel Architec-
tures and Compilation Techniques, ser. PACT’08, 2008.

[29] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: characterization and methodological con-
siderations,” in Proceedings 22nd Annual International Symposium
on Computer Architecture, ser. ISCA’95, 1995.

[30] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux,
“OLTP-Bench: An Extensible Testbed for Benchmarking Relational
Databases,” Proc. VLDB Endow., 2013.

[31] M. R. Hines, “QEMU: Features – Micro-Checkpointing,”
https://wiki.qemu.org/Features/MicroCheckpointing.

[32] ——, “RDMA Migration and RDMA Fault Tolerance for QEMU,”
KVM Forum, 2013.

[33] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
virtual memory for big memory servers,” in Proceedings of the 40th
Annual International Symposium on Computer Architecture, ser. ISCA
’13, 2013.

[34] P. W. Frey and G. Alonso, “Minimizing the hidden cost of rdma,”
in 2009 29th IEEE International Conference on Distributed Computing
Systems, 2009.

[35] R. Friedman and A. Kama, “Transparent fault-tolerant Java virtual
machine,” in 22nd International Symposium on Reliable Distributed
Systems, 2003. Proceedings., ser. SRDS’03, 2003.

[36] J. Napper, L. Alvisi, and H. Vin, “A fault-tolerant java virtual
machine,” in 2003 International Conference on Dependable Systems
and Networks, 2003. Proceedings., ser. DSN’03, 2003.

[37] P. J. Tsao, Y. F. Sun, L. H. Chen, and C. Y. Cho, “Efficient
virtualization-based fault tolerance,” in 2016 International Com-
puter Symposium, ser. ICS ’16, 2016.

[38] VMware, Inc., VMware vSphere 6 Fault Tolerance: Architecture and
Performance, Jan 2016.

[39] U. F. Minhas, S. Rajagopalan, B. Cully, A. Aboulnaga, K. Salem,
and A. Warfield, “RemusDB: Transparent High Availability for
Database Systems,” The VLDB Journal, vol. 22, no. 1, Feb. 2013.

[40] M. Nelson, B.-H. Lim, and G. Hutchins, “Fast Transparent Mi-
gration for Virtual Machines,” in 2005 USENIX Annual Technical
Conference, ser. USENIX ATC’05, 2008.

[41] J. Zhang, X. Lu, and D. K. Panda, “High-performance virtual
machine migration framework for mpi applications on sr-iov
enabled infiniband clusters,” in 2017 IEEE International Parallel and
Distributed Processing Symposium, ser. IPDPS’17, 2017.

[42] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg, “Live
wide-area migration of virtual machines including local persistent
state,” in Proceedings of the 3rd International Conference on Virtual
Execution Environments, ser. VEE ’07, 2007.

[43] A. Fischer, A. Fessi, G. Carle, and H. de Meer, “Wide-area virtual
machine migration as resilience mechanism,” in 2011 IEEE 30th
Symposium on Reliable Distributed Systems Workshops, 2011.

[44] S. K. Bose, S. Brock, R. Skeoch, and S. Rao, “Cloudspider: Com-
bining replication with scheduling for optimizing live migration
of virtual machines across wide area networks,” in 2011 11th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting, 2011.

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2865943, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, X 201X 15

Shiru Ren is currently working toward the
Ph.D. degree in the School of Electronics En-
gineering and Computer Science, Peking Uni-
versity. His research interests include virtual-
ization technologies, operating system, fault tol-
erance, and distributed system. His recent re-
search aims to implement efficient and low-
latency virtualization-based fault tolerance using
RDMA and PML.

Yunqi Zhang is a Ph.D. candidate in the Com-
puter Science and Engineering Department at
the University of Michigan. His research focuses
on architecting data centers for high efficiency
and low latency. He is a member of ACM and
IEEE.

Lichen Pan received the bachelor’s degree from
Peking University in 2017. He is currently a doc-
toral student in the School of Electronics Engi-
neering and Computer Science, Peking Univer-
sity. His research focuses on virtualization tech-
nologies, fault tolerance, and cloud computing.

Zhen Xiao is a Professor in the Department
of Computer Science at Peking University. He
received his Ph.D. from Cornell University in
January 2001. After that he worked as a senior
technical staff member at AT&T Labs - New
Jersey and then a Research Staff Member at
IBM T. J. Watson Research Center. His research
interests include cloud computing, virtualization,
and various distributed systems issues. He is a
senior member of ACM and IEEE.

