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Abstract—On-core microarchitectural structures consume
significant portions of a processor’s power budget. However,
depending on application characteristics, those structures do
not always provide (much) performance benefit. While timeout-
based power gating techniques have been leveraged for under-
utilized cores and inactive functional units, these techniques
have not directly translated to high-activity units such as
vector processing units, complex branch predictors, and caches.
The performance benefit provided by these units does not
necessarily correspond with unit activity, but instead is a
function of application characteristics.

This work introduces POWERCHOP, a novel technique that
leverages the unique capabilities of HW/SW co-designed hybrid
processors to enact unit-level power management at the appli-
cation phase level. POWERCHOP adds two small additional
hardware units to facilitate phase identification and triggering
different power states, enabling the software layer to cheaply
track, predict and take advantage of varying unit criticality
across application phases by power gating units that are not
needed for performant execution. Through detailed experimen-
tation, we find that POWERCHOP significantly decreases power
consumption, reducing the power of a hybrid server core by
9% on average (up to 33%) and a hybrid mobile core by 19%
(up to 40%) while introducing just 2% slowdown.

I. INTRODUCTION

A power saving technique that can prove critical for
energy-efficient processor design is unit-level power gating.
Unit-level power gating is a mechanism for dramatically
reducing static power consumption by cutting the supply
voltage to a circuit block within a core, and can be ap-
plied at various granularities [1]–[4]. Although timeout-
based power gating techniques have been shown to be ef-
fective for underutilized whole cores and inactive functional
units, these techniques have not translated to large, stateful,
performance-critical units such as the vector processing unit
(VPU), middle-level cache (MLC), and branch prediction
unit (BPU). The challenges in power gating this class of
units include:

1) Unit Criticality – depending on the characteristics of
the executing application code, these units can be crit-
ical for performance. Performance can be significantly
hindered if the unit is gated off at a time when it could
help application performance.

2) Statefulness – these units may contain state that must
be managed if power gated to the point of retention
loss (e.g., the register file in a VPU or branch history
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in a BPU). The saving, restoring, and management
of state when power gating these units can introduce
significant performance overheads if gated on and off
at high frequency.

3) High Activity – these units are often active, regardless
of the performance benefit they provide. For example,
whether a memory operation results in an MLC hit
or miss, the MLC handles the memory operation.
This property thwarts conventional timeout-based ap-
proaches to power gating, as these units are not subject
to lengthy periods of idleness [5]. The nearly continu-
ous activity within such units also makes it challenging
to design decision mechanisms to determine when the
unit is needed again for high performance.

4) Application Behavior – detecting whether a unit may
become more or less critical and understanding the
duration of criticality is needed to identify when gate
a unit on and off. This requires a mechanism to mon-
itor and analyze application behavior dynamically, and
hardware-only techniques to perform this introspection
may introduce significant additional complexity.

The key underlying insight of this work is that the hard-
ware/software co-design of hybrid processors is uniquely
capable of addressing these challenges. We broadly define a
hybrid architecture as one that leverages hardware/software
co-design to couple a software binary translation subsystem
with the architectural design of the processor. There has
been a resurgence of interest in this class of designs with
the recent release of NVIDIA’s Project Denver [6], [7].
In the design of Project Denver and its predecessors [8],
[9], the software component takes the form of a binary
translation (BT) and optimization subsystem sitting below
the ISA interface, and is integral to the specification of the
microarchitectural design.

The software component of a hybrid processor provides a
mechanism that can be leveraged to facilitate the monitoring
of execution and to infer properties about the characteristics
of the executing workload that indicate the criticality of un-
derlying microarchitectural units. We define unit criticality
as the performance benefit a unit provides for the executing
application code. In addition to analyzing the executing
instruction stream, the BT capability of the software system
can enable the tailoring of the instruction stream to steer
execution away from non-critical units. For example, infre-
quently executed vector instructions can be transformed into



equivalent non-vector instructions to facilitate power gating
the VPU during a phase of low VPU criticality. Because
the software subsystem can absorb the complexity required
to monitor execution and make changes to the instruction
stream to enable intelligent power gating, an approach that
leverages this subsystem can to avoid the addition of a
potentially prohibitive amount of hardware complexity.

In this work, we present POWERCHOP, a HW/SW
co-designed approach that enables sophisticated unit-level
power management decisions based on continuous monitor-
ing of unit criticality. The cornerstone of POWERCHOP’s
design is a novel mechanism for continuous unit criticality
analysis and code attribution. Throughout execution, phase
signatures composed of code region identifiers are collected
and monitored. Dynamic profiles of unit criticality are
attributed to phases and stored via two small hardware
structures. The software subsystem leverages these structures
to dynamically detect phase edges and recall unit criticality
profiles of previously-seen phases, using that information to
configure power gating at the unit level across application
phases. The specific contributions of this work are:

• We introduce POWERCHOP, a technique for identifying
and managing non-critical microarchitectural units on
HW/SW co-designed hybrid processor architectures,
power gating units when they do not provide a per-
formance benefit.

• We describe an approach for application phase identi-
fication and unit criticality attribution on hybrid pro-
cessor architectures that leverages two small additional
hardware units.

• We design phase triggered power gating policies for
three large, stateful, performance-critical architectural
units – the VPU, BPU, and MLC.

• We perform a thorough evaluation of POWERCHOP for
each of these three units, as well as for the entire
POWERCHOP system for server and mobile processor
designs across a spectrum of workload classes that
include SPEC CPU2006, PARSEC, and MobileBench.

We find that POWERCHOP significantly reduces power con-
sumption, lowering the leakage power draw of the server
processor by 9% on average (up to 33%) and the mobile
processor by 19% (up to 40%), introducing an average of
2% slowdown.

II. BACKGROUND

This section provides the foundational background on
HW/SW co-designed hybrid processors and unit-level power
gating necessary to understand the remainder of this paper.

A. Hybrid Processor Architectures
Commercial implementations of hardware/software co-

designed hybrid processor architectures include NVIDIA’s
Project Denver [6], [7], as well as the Efficeon and Crusoe
processors from Transmeta [8], [9]. Common to the design
of these architectures is the presence of a binary translation
(BT) software layer sitting atop the hardware. The BT layer
runs all system and application software, translating from

code supplied to the guest ISA1 – the ISA exposed to
system and application software – to a proprietary host ISA
implemented in hardware.

The BT subsystem is central to a hybrid architecture
design, and in this work the BT is designed to resemble
the Transmeta BT [8]. The BT consists of three principle
components – the interpreter, the translator and the nucleus.
The interpreter decodes and executes guest instructions
sequentially while collecting statistics about execution and
branch behavior. When a particular region of guest code has
reached a certain hotness threshold, the interpreter yields to
the translator. The translator produces a highly-optimized
version of the guest code region for the host ISA. This
optimized region of host-ISA code, called a translation,
is then inserted into a software structure called the region
cache. Subsequent executions of the code region can thus
occur from the translation in the region cache, without
incurring additional interpretation and translation costs. The
nucleus is responsible for handling interrupts and exceptions
at both the host ISA level and in the microarchitecture,
for example when recovering from mis-speculated load/store
reorderings. Further details on the BT subsystem of hybrid
processor architectures can be found in prior work [8]–[10].

B. Unit Level Power Gating
Power gating is a technique that reduces the power

consumed by a circuit block by cutting its supply voltage.
This technique can be applied at a range of granularities,
including at the core-level [11]–[14], and for large units
within the core [2], [15]. Given a logical circuit block, a
sleep transistor is used to control the supply voltage to the
block. When a sleep signal is asserted to the sleep transistor,
the unit is said to be gated off, causing it to lose its state and
functionality. While gated off, the unit has a minimal amount
of static leakage and switching (dynamic) power. When the
sleep signal is deasserted by restoring its voltage, the unit
is said to be gated on, allowing the unit to function as
normal. As opposed to clock gating, which reduces dynamic
power, power gating reduces both static and dynamic power.
However, power gating incurs overheads in terms of both
time and power to wait for the sleep signal to be distributed
through the sleep transistor and to drive Vdd when power is
restored to the unit. Detailed discussions of these overheads
and their implications for power gating units can be found
in prior work [2].

III. OPPORTUNITIES AND CHALLENGES

There are a number of performance critical units that
consume a significant fraction of the power budget of the
core. However, the performance benefit they provide varies
across applications and across execution phases within an
application. This non-uniformity in the criticality of units
provides power gating opportunities when the performance
benefit of keeping them powered on is marginal.

1The guest ISA of Project Denver is ARMv8, and the guest ISA of the
Transmeta designs is x86.



Figure 1. Vector operation intensity over 200
thousand instructions of gobmk; VPU criticality
varies across execution

Figure 2. Small (local) vs. large (tournament)
branch predictors over 13 million instructions of
MobileBench msn

Figure 3. 128KB 1-way vs. 1024KB 8-way L2
cache performance over 120 million instructions
of GemsFDTD

A. Variable Unit Criticality

Figure 1 depicts the intensity of vector operations over
200 thousand instructions of gobmk from SPEC CPU2006.
As shown in Figure 1, the intensity of vector operations and
the criticality of the VPU vary over time. When these periods
of low-criticality are long and the overhead of powering
the unit on and off can be justified, the VPU could be
power gated during periods of low criticality to reduce power
consumption, with a minimal impact on performance. It is
important to note that the low-criticality periods include
times when instructions hitting the VPU are scarce but non-
zero, a behavior that is difficult to take advantage of using
conventional approaches based on timeouts [2].

Modern branch predictors often leverage multiple branch
prediction approaches (local, global, hybrid, adaptive, agree,
neural, etc.), predicting branch outcomes using a tournament
of conventional approaches. The rationale behind tourna-
ment branch predictors is that each of the small predic-
tors may be useful for accurately predict branch outcomes
among a subset of applications or phases, however accu-
rately predicting branches across all applications and phases
may need to consider multiple such predictors. Figure 2
presents the IPC over time for a web browser running on a
mobile processor using a small local branch predictor (Small
BPU) and a larger tournament local/global predictor (Large
BPU). Unsurprisingly, using the large BPU instead of the
small BPU improves IPC overall. However, the performance
benefit provided by the large BPU is negligible during
many phases of execution. During those phases, the large
branch predictor has low criticality, suggesting that there
may be an opportunity to power gate parts of the BPU
during various phases of execution, saving power without
sacrificing performance.

Figure 3 illustrates the opportunity for power gating parts
of the MLC, showing the IPC of a server processor running
GemsFDTD with either a 128KB 1-way MLC or a 1024KB
8-way MLC. When the working set fits into the full 8-way
MLC but not into the 1-way MLC, having the full MLC can
provide significant performance benefit. However, when the
working set is small enough to fit in L1 or is too large to fit
in the MLC (e.g., streaming from memory), the benefit of
having the full MLC diminishes. In such situations, parts

of the MLC could be power gated without significantly
impacting performance.

B. Challenges of Unit-level Management

Taking advantage of these opportunities by power gating
at the unit level is challenging. Firstly, as shown in Figures 1-
3, during certain periods units can be critical for application
performance. Gating off these units requires a careful un-
derstanding of application behavior, as an incorrect gating
decision may cause significant performance degradations.

Secondly, units can exhibit activity even while they are
non-critical for performant execution. The VPU may be
put to use occasionally by application code, but be used
infrequently enough that the VPU lacks criticality (i.e., a
low but non-zero number of vector operations occur during
execution). Moreover, consider Figures 2 and 3, where the
large BPU and MLC, respectively, exhibit low performance
criticality during certain phases of execution, but are nev-
ertheless continuously active throughout all of execution.
Recent work has demonstrated that these high levels of
activity are the common case for the BPU and MLC, with
branches accounting for around 1 in 7 instructions in mobile
workloads, while MLC accesses occur around 1 in 125
instructions [5]. Thus, it is difficult to adopt a strategy based
on timeouts that would be able to identify and take advantage
of periods of low-criticality among these highly active units.

Thirdly, these units can contain architectural or microar-
chitectural state. The VPU has a register file, the MLC may
have dirty lines, and the BPU has a branch target buffer
(BTB) and other types of branch history. Power gating too
frequently can introduce significant performance overheads
for spilling/restoring or losing/reconstituting that state.

Understanding and taking advantage of these opportu-
nities as a dynamic property of the running application
requires monitoring and analyzing application execution,
which may be complex and costly to implement in hardware.
However, as we show in the next section, hybrid processors
are uniquely suited to address these challenges, as much of
the complexity needed to solve this problem can be absorbed
by the software layer included in hybrid designs.
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Figure 4. Overview of POWERCHOP, illustrating how it fits into a conventional hybrid processor architecture (left) and a detailed view of how its
components interact (right).

IV. SYSTEM DESIGN

This work introduces POWERCHOP, a novel approach for
dynamically identifying and taking advantage of non-critical
units in hybrid processor architectures.

A. Overview

Motivating the design of POWERCHOP is to develop a
system that can identify and manage low-criticality units,
reducing power consumption by providing a mechanism that
dynamically characterizes application execution to obtain
unit criticality metrics at the granularity of application
phases. Figure 4 shows an overview of the design of
POWERCHOP. On the left side of the figure, we show POW-
ERCHOP in the context of a conventional hybrid processor
design. POWERCHOP’s design spans both the hardware and
software subsystems. The policy vector table (PVT) and
hot translation buffer (HTB) are small hardware structures
added by POWERCHOP that enable low-level continuous
phase edge identification and attribution of unit criticality
to phases, while characterizing unit criticality and making
power management decisions is hoisted into the software
subsystem via the Criticality Decision Engine (CDE). The
right of Figure 4 shows a detailed view of how these
components are used within POWERCHOP.

Application execution on the hybrid processor occurs in
the region cache, which consists of a collection of short
traces of dynamic code sequences called translations [8],
[9]. POWERCHOP uses the translation abstraction as a key
primitive for phase-based unit criticality analysis and power
management. The runtime operation of POWERCHOP can be
characterized as follows:

1 Throughout execution, translation execution counts are
maintained by the HTB, which are used to form
phase signatures. The HTB reports phase signatures
to the PVT for the most recent window of executed

translations. The phase signatures function as unique
identifiers for the executing application phases.

2 Each dynamically detected phase signature results in a
PVT lookup. The PVT is a simple hardware structure
that maintains a record of recently executed phase sig-
natures and their corresponding power gating policies
that have been defined by the CDE.

3 If a PVT lookup results in a hit, the associated gating
decisions are applied to the relevant units.

4 If a PVT lookup results in a miss, the CDE is invoked
to handle the miss.

5 When a PVT miss is compulsory, unit criticality for
the phase is characterized by the CDE and a power
gating policy is assigned. The CDE then registers the
phase signature and gating policy with the PVT. Upon
a capacity miss, the phase signature and management
policy are fetched from memory bu the CDE and placed
into the PVT. Evicted entries from the PVT are then
stored in memory by the CDE.

POWERCHOP’s design takes advantages of the relevant
strengths of the hardware and software components of
the hybrid processor architecture. Hardware continuously
monitors the currently executing phases (via the HTB)
and triggers power management directives at phase change
boundaries (via the PVT), while software characterizes new
phases, analyzing unit criticality and configuring the power
gating policies at phase edges (via the CDE). Using this
design, POWERCHOP addresses the key challenges that need
to be solved to enact unit-level power gating decisions:

1) Unit Criticality – by analyzing the code and making
power gating decisions on phase edges, POWERCHOP
determines unit criticality, gating off units that are non-
critical for performant execution.

2) Statefulness – POWERCHOP can leverage the software
runtime to flexibly control the granularity of managing
units, minimizing the performance overhead of sav-
ing/restoring or losing state.
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Figure 6. POWERCHOP hardware structures

3) High Activity – based on measurements of unit critical-
ity, POWERCHOP can power down high activity units
when they are non-critical.

4) Application Behavior – POWERCHOP leverages the
software component to facilitate application character-
ization with minimal additional hardware complexity.

In the following subsections, we provide more details on the
hardware and software components of POWERCHOP.

B. Hardware Support

Two small hardware structures called the hot translation
buffer (HTB) and policy vector table (PVT) are used by
POWERCHOP to facilitate identifying phases, attributing unit
criticality to phases, and enacting power gating decisions.

1) Phase Identification: Figure 5 illustrates the intuition
of the phase recognition mechanism in POWERCHOP. As
translations are executed by the processor out of the region
cache during execution, these translations correspond to ac-
tive code regions, denoted P1 and P2 in Figure 5(a). We de-
fine an execution window as a period of execution, measured
in the number of dynamically executed translations. For
example, an execution window of 100 would correspond to
100 consecutively executed translations. Figure 5(b) shows
POWERCHOP’s view of the dynamic sequence of execution
windows that correspond to P1 and P2, showing three con-
secutive execution windows – P1, P2, then P1. To uniquely
identify phases, POWERCHOP builds a phase signature using
the hottest N translations from each execution window.
Figure 5(c) shows an example of the phase signatures that
identify P1 and P2 (N = 4 in the example).

Care must be taken in choosing the phase signature
length N and the execution window size. If the phase
signature length is too long, the phase signature may contain
insignificant traces that are unlikely to recur. If the trace
signature length is too short, distinct phases may not be
treated as distinct. Similarly, the window size can impact the
quality of the phase recognition approach. Larger window
sizes may miss short phases, while short window sizes may
result in phases dominated by short-lived, transient behavior,
potentially causing frequent power gating policy changes. To
arrive at these parameter settings in designing POWERCHOP
we performed a sensitivity analysis, finding that using a trace

signature length of 4 and a window size of 1000 translations
proves effective across a wide range of workloads.

2) Hot Translation Buffer: To facilitate continuous phase
signature collection and identification, POWERCHOP intro-
duces a simple hardware structure called the hot translation
buffer (HTB), illustrated in Figure 6(a). The HTB is a
fully associative hardware buffer that tracks translations as
they execute along with the number of dynamic instructions
executed on each translation.

The program counter (PC) of a translation head uniquely
identifies translations in our BT. We use the lower 32-bits
of the instruction at each translation head’s PC as a unique
ID for each translation (the region cache is typically far
smaller than 32-bits, guaranteeing that these 32-bits are
unique). Unique translation IDs are denoted in the figure
as t1, t2, etc. in Figure 6. Tracking head PCs is facilitated
by the introduction of a new bit into the instruction format
of the host ISA to indicate whether the instruction is a
translation head, as well as a performance counter to track
the number of instructions seen between translation heads.
The translation and execution counts within the HTB are
updated as a side effect of translation head execution,
occurring off the critical path of execution.

As each translation is executed, if it is already present
in the HTB, its associated dynamic instruction count is
incremented by the number of instructions executed since the
previous translation. Otherwise, the new translation is added
to the HTB and its dynamic instruction count is initialized to
the value in the counter. If the number of unique translations
in the current execution window exceeds the size of the
HTB, it is simply ignored. Throughout this work, we use
a HTB size of 128 for a window size of 1000 translations
to track phases. As a result, the HTB holds a record of
the dynamic instruction counts for each unique translation
executed in the current execution window. At the end of each
execution window, the HTB initiates a PVT lookup and the
HTB is flushed for the next execution window.

3) Policy Vector Table: The policy vector table (PVT) is
a small structure containing the recent history of uniquely
executed phases. The PVT functions as a fully-associative
cache, maintaining a record of recently executed phase
signatures and for each signature, a corresponding power
gating policy. The gating policy takes the form of a bit



Algorithm 1 Criticality Decision Engine (CDE)
while CDE is invoked do

if is new phase then
collect performance statistics;
if profiling is complete then

register to PVT;
else

insufficient information, keep collecting;
end if

else
if old phase being profiled then

collect performance statistics;
if profiling is complete then

register to PVT;
else

insufficient information. keep collecting;
end if

else
// is an old phase and has been profiled
re-register to PVT;

end if
end if

end while

vector that defines the power gating state for each of the
logical units controlled by POWERCHOP.

Figure 6(b) illustrates the design of the PVT for the
three unit types POWERCHOP currently supports: the vector
processing unit (VPU), branch prediction unit (BPU) and
middle-level cache (MLC). In the figure, we show 2 phase
signatures, each with their associated policy for the VPU
(V), BPU (B) and MLC (M). The policies for the VPU and
BPU are bimodal, with 1 representing the gated-on state and
0 representing the gated-off state. The MLC uses a finer-
grain policy, having 3 power gating states that allow it to be
configured to have all ways gated on, half the ways gated on,
or a single way gated on. Thus, the power gating policy for
the MLC uses two bits. The number of states for each unit
can be increased by increasing the number of bits used in
the PVT to represent the power states of that unit. The PVT
holds 16 entries for recent phases that have been executed.
As new phases are registered (written into the PVT) by
the Criticality Decision Engine, stale phase signatures are
evicted using an approximate LRU replacement policy.

4) Hardware Costs: The PVT in our design uses 16
entries, totalling 264 bytes (each entry has 4⇥ 32-bit PCs
plus 4-bits for power states). The HTB is 128 entries and
1 KB storage (32-bits per translation ID and 32-bits per
execution counter). Using cacti simulations [16], we find
that the power (0.027 W) and area (0.008 mm2) needed for
the HTB are small, particularly in comparison to the power
and area budgets typical of modern processor designs.

C. Software Subsystem Support
The Criticality Decision Engine is responsible for char-

acterizing unit criticality and determining the power gating
policy for each phase signature.

1) Criticality Decision Engine: The CDE is implemented
as an addition to the BT subsystem of the hybrid processor.
Model specific registers (MSRs) are used as the primary
interface between the PVT and the CDE. Algorithm 1

presents a summary of the core functionality of the CDE.
When invoked via a PVT miss, the CDE performs one of
three actions:

• New Phase – if the CDE finds that a new phase
has been detected (i.e., the phase has never been seen
before), it records the phase as being in profiling mode.
Profiling information is then collected for the next ex-
ecution window from hardware performance monitors.
If the information gathered from one execution window
is sufficient for unit criticality analysis, the phase and
the power gating policy are then registered to the PVT
immediately. Otherwise, the phase is not registered
and will result in subsequent invocations of profiling
the next time the phase is executed. Details of gating
policies and examples of both of these situations are
presented shortly in Section IV-C2.

• Continued Phase Profiling – when the CDE finds a
phase signature that is in profiling mode, it will gather
performance counter information and either remain in
profiling mode if more profiling is needed, or register
the policy with the PVT when enough profiling infor-
mation has been collected.

• Evicted Phase – if the CDE finds a phase signature that
is already characterized but was previously evicted from
the PVT, the CDE re-registers that phase signature and
its gating policy with the PVT. An approximate LRU
eviction policy selects the phase that is evicted from
the PVT to make room for the current phase.

2) Criticality Scoring and Policies: The CDE character-
izes the unit criticality for a phase based on the information
gathered during a profiling window. This section describes
the approaches used to characterizing criticality for the three
power-hungry unit types supported by POWERCHOP – the
VPU, BPU and MLC.
VPU. POWERCHOP uses the ratio of SIMD instructions
committed during a phase PhaseSIMD to the number of total
instructions committed during the phase PhaseTotInsn, to
assess the criticality of VPU during a phase CriticalityVPU.
These profiles are collected during a single profiling window.
When profiling is complete, POWERCHOP assigns the gate-
off policy to the VPU if CriticalityVPU fails to exceed
a threshold ThresholdVPU. When the VPU is gated off,
any instructions bound for the VPU (e.g., SSE and AVX
instructions in x86, or NEON instructions in ARM) are
emulated using scalar operations emitted along alternate
code paths in the region cache’s translations.
BPU. For the BPU, POWERCHOP uses two profiling win-
dows to assess the criticality of a large tournament branch
predictor relative to a small local predictor. MisPredLarge is
the misprediction rate for the large predictor during a first
profiling window, and MisPredSmall is the misprediction
rate for the small predictor from a second profiling win-
dow. POWERCHOP uses the difference between these two
misprediction rates as the criticality of the large predictor
CriticalityBPU, assigning the gate-off policy to the BPU if
CriticalityBPU fails to exceed a threshold ThresholdBPU.



MLC. For the MLC, POWERCHOP assesses unit criticality
by profiling a single window to measure the number of L2
cache hits and the number of total instructions executed dur-
ing the window, PhaseL2Hit and PhaseTotInsn, respectively.
The criticality of the MLC CriticalityMLC is defined as the
ratio of these two values. POWERCHOP keeps either 1 way,
half the ways, or all ways of the MLC in an active state,
allowing the MLC to service requests at all times while
allowing for significant reductions in power consumption.
This design uses two thresholds to assign gating policies,
leaving all ways active if CriticalityMLC exceeds a threshold
ThresholdMLC1, leaving 1 way active if CriticalityMLC
does not exceed a second threshold ThresholdMLC2, and
leaving half the ways active otherwise.

3) Software Costs: Because the BT subsystem already
provides support for region cache, translations and inter-
rupts, much of the software complexity in POWERCHOP is
absorbed by the existing BT subsystem. The most significant
additional source of overhead over the conventional BT are
additional interrupts triggered by PVT misses. Experiments
show that an average 0.017% of translations across the SPEC
CPU2006 benchmarks cause PVT misses, resulting in less
than 0.5% additional performance overhead on average.

D. Unit-level Power Gating
Power gating is implemented by adding a header or footer

transistor to the block that is to be power gated. A sleep
signal is applied to the header/footer sleep transistor, which
cuts the supply voltage to the block. Even when a unit is
gated, its supply voltage is non-zero. We therefore assume
that the leakage power of a gated unit is reduced to 5%
of its non-gated leakage power. To incorporate the energy
overhead EOverhead of asserting and deasserting the sleep
signal to the header/footer transistor, we use the model
proposed by Hu et. al. [2] and summarized by Equation 1.

EOverhead = 2

WH

↵
ES

cyc (1)

Determining EOverhead for a unit thus requires deter-
mining three parameters — the average switching energy
of the unit for a single cycle ES

cyc, the ratio of the area
of the sleep transistor to the unit WH and the average
switching factor for the unit ↵. We find ES

cyc for a unit
from a McPAT [17] estimate of that unit’s peak dynamic
power. For WH , estimates in the literature range between
0.05 to 0.20 [2], [18]–[20]; for the purpose of modeling
EOverhead we assume a value of 0.20, which results in the
largest energy overhead from this range of estimates. For
the switching factor ↵, we use a value of 0.05.

Power gating also incurs a performance cost, as the
affected unit will be idle while the sleep signal is distributed
through the sleep transistor and while Vdd is restored to the
unit. To model this performance impact, we assume that
all application execution is paused while the unit is being
gated on or off. We apply a 50 cycles penalty when gating
the MLC, 30 cycles when gating the VPU, and 20 cycles
for gating the BPU.

Finally, microarchitectural units may have state that can-
not be retained when the unit is gated off. For instance, the
MLC and BPU have microarchitectural state that includes
cache lines and branch history, respectively, while a VPU
may contain architecturally-visible registers in a register file.
In this work, we assume that most microarchitectural state
is lost when a unit is power gated. The exception to this
is dirty lines in the MLC, which must be written back to
last level cache when the MLC is gated off. Moreover, we
assume that the VPU contains a register file that is explicitly
saved and restored when the VPU undergoes gating policy
transitions, applying a 500 cycle penalty when the VPU is
gated on or off. In the case of lost microarchitectural state,
the relevant microarchitectural structures must be re-warmed
as application execution continues. In the case of writing
back dirty MLC lines and saving/restoring VPU registers,
we assume that application execution is halted whilst those
operations occur. In all cases, we measure the impact of
these overheads via detailed architectural simulation.

V. EVALUATION

We next evaluate POWERCHOP, using detailed simulation
to observe its impact on performance and power consump-
tion across server and mobile processor designs.

A. Methodology

Applications and Software Stack. We evaluate POWER-
CHOP on a range of applications from SPEC CPU2006 [21],
PARSEC [22] and the Realistic General Web Browsing
(R-GWB) benchmarks from MobileBench [23]. PARSEC
and SPEC are used with the server processor, while Mo-
bileBench is used with the mobile processor. Our server con-
figuration runs on Linux kernel version 3.2. MobileBench
R-GWB is a set of web browsing benchmarks, and our
experiments run each benchmark inside the web browser
on the full Android software stack and Android browser.
Simulation Environment. Power is modeled for a 32nm
technology node using McPAT [17]. We use detailed archi-
tectural simulation in gem5 [24] to evaluate POWERCHOP,
using SimPoint [25] to select simulation regions. The key
overheads that are addressed in simulation to fully account
for the impact of POWERCHOP include the overhead of
application idle time while power gating takes effect and the
impact of dealing with unit state, both discussed in detail in
Section IV-D, as well as the overhead of running without
the benefit of the units gated off by POWERCHOP.
Architecture. Our evaluation covers two processor designs
points, reflecting server and mobile configurations as shown
in Figure 7. The key characteristics of these architectures,
the units managed by POWERCHOP within the processor,
and additional summary information about the power gating
operations of the processors are summarized in Table I.
Criticality Thresholds. ThresholdVPU, ThresholdBPU

and ThresholdMLC1 are all set to 0.001 in this work,
while ThresholdMLC2 is set to 0.0001. We have found



(a) Server core - Intel Nehalem

(b) Mobile core - ARM Cortex-A9

MLC

MLC

BPU

VPU

VPU

B
PU

Figure 7. Server/mobile core
diagrams, highlighting the key
units used by POWERCHOP

Table I
SUMMARY OF ARCHITECTURAL DESIGN POINTS USED IN THE EVALUATION

Server Processor Configuration Mobile Processor Configuration
Applications SPEC CPU2006 [21], PARSEC [22] MobileBench [23]

MLC

Baseline 1024KB, 8-way 2048KB, 8-way
Area 35% of core 60% of core
Gated Off 512KB 4-way or 128KB 1-way 1024KB 4-way or 256KB 1-way
State WB dirty lines, lose clean lines, rewarm WB dirty lines, lose clean lines, rewarm
Overheads 50 cycles/switch + WB + rewarm 50 cycles/switch + WB + rewarm

VPU

Baseline 4-wide SIMD 2-wide SIMD
Area 20% of core 18% of core
Gated Off unit off, ops emulated by BT unit off, ops emulated by BT
State save/restore register file to memory save/restore register file to memory
Overheads 30 cycles/switch + 500 cycle save/restore 30 cycles/switch + 500 cycle save/restore

BPU

Baseline loc/glob tourney, 4K-ent BTB, 16K-ent chooser loc/glob tourney, 2K ent BTB, 8K-ent chooser
Area 4% of core 3% of core
Gated Off local only, 1K-entry BTB local only, 512-entry BTB
State lose global, chooser and BTB state, rewarm lose global, chooser and BTB state, rewarm
Overheads 20 cycles/switch + rewarm 20 cycles/switch + rewarm

these thresholds to work well to enable significant power
draw reductions while minimizing the performance impact
of critical units being gated off. Alternative policies to this
are also possible, such as more aggressive policies using
higher thresholds that target energy minimization.

B. Phase Identification

POWERCHOP leverages its online phase recognition ca-
pability (Section IV-B1) to identify execution phases during
which units have low performance criticality in order to
make power gating decisions. The quality of the online
phase recognition in capturing application execution phases
that have similar properties (executing the same code and
exhibiting similar unit performance criticality) is crucial for
POWERCHOP’s effectiveness at saving power while main-
taining high performance.

We evaluate the quality of the phase detection by com-
paring the code executed across recurrences of each phase.
During the application run, a phase signature is generated
every 1000 translations. To compare how well the phases de-
tected by POWERCHOP capture what code is being executed,
we compare the translation vectors between 1000-translation
execution windows that are identified by POWERCHOP as
being part of the same phase. To generate this comparison,
we take the Manhattan distance of each pair of translation
vectors in the application that have identical signatures, then
compute the average Manhattan distance of all such pairs
across application execution. A perfect phase analysis ap-
proach would therefore have an average Manhattan distance
of 0, indicating that the exact same 1000 translations are
executed across all windows recognized by POWERCHOP
as the same phase, while a worst-case approach would have
a distance of 1000. As illustrated in Figure 8, our approach
effectively identifies phases that are executing identical or
similar code: the phases characterized by POWERCHOP as
having the same phase signatures execute highly overlapping
sets of translations. The average Manhattan distance across

applications is just 2.8% (28 out of 1000 translations), and
never exceeds 6.8%.

C. Per-unit Analysis
We now evaluate POWERCHOP’s effectiveness in gating

the VPU, BPU and MLC each in isolation, where one unit is
managed while the others are gated on throughout execution.
Unit Activity. Figures 9 and 10 show the percentage of
cycles POWERCHOP is able to power gate each of the
three units for the mobile processor design and the server
processor design, respectively. Overall, POWERCHOP gates
off units a significant fraction of execution. The VPU is
gated off around 90% of the time for almost all SPEC-
INT benchmarks on the server processor and for all of the
applications on the mobile processor. Surprisingly, the VPU
is also shut off for significant fractions of some SPEC-
FP and PARSEC applications, discussed in further detail in
Section V-E. The VPU is gated off above 90% of the time
for namd and dedup, and 20% of the time for soplex
and sphinx.

For the MLC, POWERCHOP also way-gates the cache
a significant amount of the time. POWERCHOP configures
the MLC as 1-way for over 40% of the cycles on several
SPEC and PARSEC applications such as gems, milc,
gcc, libquantum and streamcluster. For the Mo-
bileBench applications on the mobile processor, the MLC
is gated off in some fashion an average of nearly 20% of
the time across all applications. The large BPU is often
found to be necessary by POWERCHOP for the SPEC and
PARSEC benchmarks on the server processor, though there
are notable exceptions where the BPU is gated for significant
fractions of execution for applications such as lbm and
hmmer. However, for the MobileBench applications on the
mobile processor, the BPU is gated off a substantial fraction
of the time, an average of 40% across applications.
Policy Change Frequency. Figure 11 presents the average
number of times the policies enacted by POWERCHOP result
in changes to the power gating state of units throughout



Figure 8. Code similarity between different execution windows charac-
terized by POWERCHOP as having the same phase signature. On average,
97.8% of translations are identical, demonstrating the effectiveness of the
phase identification approach

Figure 9. Unit activity on the mobile processor design with POWERCHOP

Figure 10. Unit activity on server processor design with POWERCHOP

execution. The higher the number of power gate switches
needed, the higher the performance and energy penalty. We
find that on average POWERCHOP changes the BPU policy
an average of less than 50 times per million cycles, the VPU
less than 10 times per million cycles, and the MLC less than
5 times per million cycles. Note that POWERCHOP gates off
units for a high percentage of time while also maintaining
a reasonably low number of unit state changes, which helps
minimize any resultant performance and power overheads.
The quantitative impact of POWERCHOP on performance
and power is examined in further detail later next.

D. Multi-unit Management

The following experiments evaluate the impact of POW-
ERCHOP when applied simultaneously to all three units.
Performance. Figure 12 presents the performance of a full-
powered configuration (MLC, VPU and BPU are at their
highest-power states for the entire execution), a POWER-
CHOP-managed configuration (POWERCHOP chooses when
to power gate all three units) and a minimally-powered

configuration (MLC, VPU and BPU are in their lowest-
power states for the entire execution). As shown in the figure,
the minimally-powered configuration loses substantial per-
formance compared to a fully-powered core, around 84%
on average. On the other hand, POWERCHOP loses very
little performance when compared to the full-powered core,
averaging only 2.2% across all applications. By exploiting
opportunities to gate units when they are not performance-
critical, POWERCHOP achieves nearly all of the performance
of a core that is always fully-powered while significantly
improving the power consumption.
Power and Energy. Figure 13 presents the total core
power reduction and energy reduction when POWERCHOP
manages the MLC, VPU and BPU simultaneously. Over-
all, POWERCHOP reduces total core power consumption –
including both leakage and dynamic power – by 10% for
SPEC-INT, 6% for SPEC-FP, 8% for PARSEC and 19% for
MobileBench. POWERCHOP achieves significant total power
reduction for a large set of applications; for 13 out of 29
applications studied, POWERCHOP achieves above 10% core
power reduction. For benchmarks such as lbm, milc and
amazon, it achieves larger reductions of up to 40% of total
core power consumption.



Figure 11. Frequency of unit state changes resulting from POWERCHOP enacting power gating policies

Figure 12. Application performance with POWERCHOP compared a full-power approach that keeps the VPU, BPU and MLC gated on throughout
execution and a low-power approach that keeps the units in their lowest-power state throughout execution

Energy reductions are slightly smaller than power re-
duction since POWERCHOP allows for minor perfor-
mance degradations (below 2.2% on average). POWERCHOP
achieves up to a 37% reduction on total energy. For 10 out
of 29 applications, it achieves more than 10% of total energy
reduction. On average, the energy reduction is 9% across all
29 applications in our study.
Leakage Power. Leakage power is an important part of
power consumption, and is of particular importance as pro-
cess technologies shrink and leakage maintains or increases
its share of the power budget. Figure 14 shows the reduc-
tion in core leakage power when POWERCHOP manages
power gating for the VPU, BPU and MLC. POWERCHOP
achieves significant leakage power reductions for most the
applications. For 10 out of 29 applications, POWERCHOP
achieves around a 20% reduction in leakage power; and for
an additional 12 out of the 29 applications, POWERCHOP
achieves significantly higher than 20% (up to 52%) leak-
age reductions. On average, POWERCHOP achieves a 10%
leakage power reduction for SPEC-FP and a 12% reduction
for PARSEC. Its effectiveness is higher for SPEC-INT and
MobileBench, averaging a 23% reduction for SPEC-INT and
32% for MobileBench. Moreover, these power reductions
come at a modest performance degradation of just 2.2%.

E. Comparison to HW-Only Timeouts

An approach that has been proposed for both cores and
logical units [2], [11]–[15] is to power gate after a period
of unit idleness. For unit-level power gating, prior work
focuses on functional units like the VPU, which is the
most promising unit for timeout-based approaches among
the three units in our study. Here we evaluate POWERCHOP’s
VPU gating against a time-out based approach.

Figure 15 illustrates the prevalence vector operations
in every 1000-instruction execution shard within running
applications. As shown in the figure, for several applications
certain phases of execution only contain a small number
of vector operations (0 < V  4). Because POWERCHOP
leverages the binary translation subsystem to avoid vector
operations when those operations are infrequent and the
performance-criticality is low, it can exploit these oppor-
tunities to create larger execution windows that make power
gating the VPU worthwhile.

The key factor in a timeout approach is choosing the
timeout period – the number of idle cycles after which the
unit is power gated. To carefully devise a well-performing
timeout approach, we ran a spectrum of timeout periods
from 100 to 100K cycles. From among these we chose a
20K cycle timeout, as this is the timeout period that saves
the most power while incurring less than 5% worst-case



Figure 13. Total core power and energy reduction with POWERCHOP Figure 14. Leakage power reduction with POWERCHOP

Figure 15. Vector operation prevalence (V) among execution shards Figure 16. VPU gating activity for POWERCHOP vs. timeout

application performance degradation (the comparable level
of performance degradation to POWERCHOP).

Figure 16 shows the percentage of cycles the VPU is
kept idle during POWERCHOP-managed runs in comparison
to timeout. POWERCHOP gates the VPU off at least as
much as the timeout approach across all applications. In
a few cases, including namd, perlbench and h264,
POWERCHOP shows immense benefits over timeout. For
example, POWERCHOP keeps the VPU gated off during
nearly all of namd’s execution while timeout keeps the VPU
gated on for the nearly the entirety of execution. This occurs
because namd has occasional phases of small number of
vector operations. These small numbers of VPU operations
are nearly uniformly distributed throughout execution, which
prevents the timeout approach from gating off the unit.
POWERCHOP, on the other hand, is able to quickly identify
that the VPU is not performance-critical during these phases
and gate the unit off throughout most of execution.

Timeout based approaches are ill-suited for the MLC and
BPU due to the highly active nature of those units. The
difficulty in applying timeouts to these units is that the
BPU and MLC are unlikely to be inactive for long periods,
regardless of whether they are providing a substantial per-
formance benefit to the application, and thus unit inactivity
is of limited use for triggering a timeout. Prior work has
pointed out that branches account for 1 out of every 20
instructions executed in SPEC, and for a range of cache

configurations, MLC accesses occur 1 out of every 100 to
200 instructions executed [5]. Additionally, for units like the
VPU, the decision mechanism for gating the unit back on
is clear – gate it back on when the unit is needed (e.g., the
VPU is needed to execute a vector operation). It is unclear
how a timeout approach can easily derive such a decision
mechanism for highly active units such as the BPU or MLC.

VI. RELATED WORK

This work most closely ties into three research areas:
power gating, hybrid processor architecture design and phase
analysis. Prior work has shown that core power gating can be
controlled at very coarse granularity by software or the oper-
ating system [11]. Conversely, unit-level (or smaller) power
gating [12] has been shown to be possible using hardware-
only timeout approaches [2] for a certain class of units
that are 1) subject to prolonged periods of inactivity and
2) stateless. POWERCHOP overcomes the first limitation by
leveraging unit criticality rather than unit inactivity to make
gating decisions and the second limitation by enacting gating
decisions at a coarser granularity, allowing it to amortize the
larger gate switching overheads that may accompany saving
and restoring architectural state in the gated unit.

Others have proposed techniques to reduce cache energy
when cache ways or lines are not effectively utilized [26],
[27]. Flautner et. al. [27] propose the drowsy cache, a per-
line leakage power reduction technique that puts cache lines



into a low-voltage drowsy state when they are idle. This
approach differs from ours in two key respects: (1) the
drowsy cache requires that state be preserved, which limits
how low the voltage can be cut and how much leakage power
can be saved [28] and (2) drowsy cache will leave cache lines
active while they are highly active, being accessed frequently
but doing little to help the performance of the application
(e.g., when the working set size is larger than the cache).

A key enabling technology for POWERCHOP is the hybrid
processor architecture, and the binary translation mecha-
nism [8], [29]–[31] it encompasses. Our work is comple-
mentary to recent work that focus on some of the advantages
offered by the unique capabilities of hybrid architecture
designs to improve performance [9], [10], [32]–[35].

A number of prior works have shown that code-based
phase classification has numerous advantages [36] and that
using basic block vectors (BBVs) and its variants are ef-
fective [25], [37]. There are several differences between our
phase recognition approach and BBV. Firstly, POWERCHOP
takes advantage of the binary translation system and uses
translations (traces) from the BT instead of basic blocks
as the basic unit for phase recognition. Secondly, instead
of keeping track of a full record of frequencies of all basic
blocks, POWERCHOP identifies only the hottest translations.
Since translations are traces that already embed path infor-
mation, keeping track of only a few hot translations (4 in
this work) is sufficient for us to capture phases accurately.
More importantly, it also facilitates a low-overhead hard-
ware implementation. Prior work, for example, requires full
comparisons between vectors of basic block frequencies for
phase matching and identification [38].

Dhodapkar et.al [39] propose a phase transition detection
technique based on working set signatures. Their technique
identifies phases that are multiple orders of magnitude longer
than those detected by POWERCHOP. The finer-grain stable
phases identified by POWERCHOP allows it to exploit more
potential gating opportunities and provides faster reactions
(up to a 3 orders of magnitude difference). This is particu-
larly important due to the large performance cost associated
with wrong gating-off decisions.

VII. CONCLUSION

This work introduces POWERCHOP, a novel approach
to unit-level power gating for HW/SW co-designed hybrid
processor architectures. Our approach identifies unit criti-
cality characteristics and uses those characteristics to enact
power gating decisions on non-critical units. We demonstrate
the effectiveness of POWERCHOP using three power hungry
units: the vector processing unit (VPU), branch prediction
unit (BPU), and middle-level cache (MLC). POWERCHOP
dramatically reduces power consumption while retaining
application performance. When applying POWERCHOP to
the VPU, BPU, and MLC simultaneously we observe leak-
age power reductions of up to 33% (9% on average) on a
server processor across a wide range of workloads and 40%
(19% on average) on a mobile processor with an average
performance degradation of just 2%.
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