
2

Designing Future Warehouse-Scale Computers for Sirius,
an End-to-End Voice and Vision Personal Assistant

JOHANN HAUSWALD, MICHAEL A. LAURENZANO, YUNQI ZHANG,
HAILONG YANG, YIPING KANG, CHENG LI, AUSTIN ROVINSKI,
ARJUN KHURANA, RONALD G. DRESLINSKI, TREVOR MUDGE,
VINICIUS PETRUCCI, LINGJIA TANG, and JASON MARS, Clarity Lab, University
of Michigan at Ann Arbor; Beihang University

As user demand scales for intelligent personal assistants (IPAs) such as Apple’s Siri, Google’s Google Now,
and Microsoft’s Cortana, we are approaching the computational limits of current datacenter (DC) architec-
tures. It is an open question how future server architectures should evolve to enable this emerging class
of applications, and the lack of an open-source IPA workload is an obstacle in addressing this question. In
this article, we present the design of Sirius, an open end-to-end IPA Web-service application that accepts
queries in the form of voice and images, and responds with natural language. We then use this workload to
investigate the implications of four points in the design space of future accelerator-based server architectures
spanning traditional CPUs, GPUs, manycore throughput co-processors, and FPGAs. To investigate future
server designs for Sirius, we decompose Sirius into a suite of eight benchmarks (Sirius Suite) comprising the
computationally intensive bottlenecks of Sirius. We port Sirius Suite to a spectrum of accelerator platforms
and use the performance and power trade-offs across these platforms to perform a total cost of ownership
(TCO) analysis of various server design points. In our study, we find that accelerators are critical for the
future scalability of IPA services. Our results show that GPU- and FPGA-accelerated servers improve the
query latency on average by 8.5× and 15×, respectively. For a given throughput, GPU- and FPGA-accelerated
servers can reduce the TCO of DCs by 2.3× and 1.3×, respectively.

CCS Concepts: ! Computer systems organization → Architectures;

Additional Key Words and Phrases: Datacenters, warehouse-scale computers, emerging workloads, intelli-
gent personal assistants

ACM Reference Format:
Johann Hauswald, Michael A. Laurenzano, Yunqi Zhang, Hailong Yang, Yiping Kang, Cheng Li, Austin
Rovinski, Arjun Khurana, Ronald G. Dreslinski, Trevor Mudge, Vinicius Petrucci, Lingjia Tang, and Jason
Mars. 2016. Designing future warehouse-scale computers for Sirius, an end-to-end voice and vision personal
assistant. ACM Trans. Comput. Syst. 34, 1, Article 2 (April 2016), 32 pages.
DOI: http://dx.doi.org/10.1145/2870631

This article extends the version published at ASPLOS 2015. This work was partially sponsored by Google,
ARM, the Defense Advanced Research Projects Agency (DARPA) under agreement HR0011-13-2-000, and
the National Science Foundation (NSF) under grants CCF-SHF-1302682 and CNS-CSR-1321047.
The work of H. Yang was conducted as a postdoctoral fellow of Clarity Lab at the University of Michigan.
Authors’ addresses: J. Hauswald, M. A. Laurenzano, Y. Zhang, Y. Kang, C. Li, A. Rovinski, A. Khurana, R.
G. Dreslinski, T. Mudge, V. Petrucci, L. Tang, and J. Mars (corresponding author), Computer Science and
Engineering Department, University of Michigan at Ann Arbor; emails: {jahausw, mlaurenz, yunqi, ypkang,
elfchris, rovinski, khuranaa, rdreslin, tnm, lingjia, profmars}@umich.edu; H. Yang, Baihang University;
email: hailong@umich.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ 2016 ACM 0734-2071/2016/04-ART2 $15.00
DOI: http://dx.doi.org/10.1145/2870631

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

http://dx.doi.org/10.1145/2870631
http://dx.doi.org/10.1145/2870631

2:2 J. Hauswald et al.

1. INTRODUCTION
Apple’s Siri [AppleSiri2011], Google’s Google Now [GoogleNow 2014], and Microsoft’s
Cortana [MicrosoftCortana 2015] represent a class of emerging Web-service applica-
tions known as intelligent personal assistants (IPAs). An IPA is an application that
uses inputs such as the user’s voice, vision (images), and contextual information to pro-
vide assistance by answering questions in natural language, making recommendations,
and performing actions. These IPAs are emerging as one of the fastest-growing Internet
services, as they have recently been deployed on well-known platforms such as iOS,
Android, and Windows Phone, making them ubiquitous on mobile devices worldwide
[IDCMobile 2015]. In addition, the usage scenarios for IPAs are rapidly increasing with
recent offerings in wearable technologies such as smart watches [GoogleAndroidWear
2014] and smart glasses [GoogleGlass 2014]. Recent projections predict the wearables
market to be at 485 million annual device shipments by 2018 [ABIResearch 2013]. This
growth in market share, coupled with the fact that the design of wearables is heavily
reliant on voice and image input, further indicates that rapid growth in user demand
for IPA services is on the horizon.

IPAs differ from many of the Web-service workloads currently present in modern
warehouse-scale computers (WSCs). In contrast to the queries of traditional browser-
centric services, IPA queries stream through software components that leverage recent
advances in speech recognition, natural language processing (NLP), and computer
vision to provide a speech-driven and/or image-driven contextually based question-
and-answer system to users [Hearst 2011]. Due to the computational intensity of these
components and the large data-driven models they use, service providers house the
required computation in massive datacenter (DC) platforms in lieu of performing the
computation on the mobile devices themselves. This offloading approach is used by
both Apple’s Siri and Google’s Google Now, as they send compressed recordings of voice
command/queries to DCs for speech recognition and semantic extraction [Siegler 2011].
However, DCs have been designed and tuned for traditional Web services such as Web
Search (WS), and questions arise as to whether the current design employed by modern
DCs, composed of general-purpose servers, is suitable for emerging IPA workloads.

IPA queries require a significant amount of compute resources compared to tradi-
tional text-based Web services such as WS. As we show later in this work, the compu-
tational resources required for a single leaf query is in excess of 100× more than that
of traditional WS. Figure 1 illustrates the scaling of compute resources in a modern
DC required to sustain an equivalent throughput of IPA queries compared to WS. Due
to the looming scalability gap shown in the figure, there has been significant interest
in both academia and industry to leverage hardware acceleration in DCs using various
platforms such as GPU, manycore co-processors, and FPGAs to achieve high perfor-
mance and energy efficiency. To gain further insight on whether there are sufficient
acceleration opportunities for IPA workloads, as well as identification of the best accel-
eration platform, several challenges need to be addressed, including the following:

(1) Identifying critical compute and performance bottlenecks throughout the end-to-
end lifetime of an IPA query

(2) Understanding the performance, energy, and cost trade-offs among popular accel-
erator options given the characteristics of IPA workloads

(3) Designing future server and DC solutions that can meet the amount of future user
demand while being cost and energy efficient.

However, the lack of a representative, publicly available, end-to-end IPA system proves
prohibitive for investigating the design space of future accelerator-based server designs
for this emerging workload. To address this challenge, we first construct an end-to-end

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

Sirius: An Open End-to-End Voice and Vision Personal Assistant 2:3

Fig. 1. Impact of higher computational requirements for IPA queries on DCs.

stand-alone IPA service—Sirius—that implements the core functionalities of an IPA
such as speech recognition, image matching, NLP, and a question-and-answer sys-
tem. Sirius takes as input user-dictated speech and/or image(s) captured by a camera.
There are three pathways of varying complexity through the Sirius back-end based
on the nature of the input query. A voice command primarily exercises speech recog-
nition on the server side to execute a command on the mobile device. A voice query
additionally leverages a sophisticated NLP question-and-answer system to produce a
natural language response to the user. A voice and image question such as When does
this restaurant close? coupled with an image of the restaurant also leverages image
matching with an image database and combines the matching output with the voice
query to select the best answer for the user. We have constructed Sirius by integrat-
ing three services built using well-established open-source projects that include tech-
niques and algorithms representative of those found in commercial systems. These open
projects include CMU’s Sphinx [Huggins-Daines et al. 2006], representing the widely
used Gaussian mixture model (GMM)-based speech recognition; Kaldi [Povey et al.
2011], and RWTH’s RASR [Rybach et al. 2011], representing industry’s recent trend
toward deep neural network (DNN)-based speech recognition; OpenEphyra (OE) [Seide
et al. 2011], representing the state-of-the-art question-and-answer system based on
IBM’s Watson [Ferrucci et al. 2010]; and SURF [Bay et al. 2006], implemented using
OpenCV [Bradski 2000] and representing state-of-the-art image matching algorithms
widely used in various production applications.

With this end-to-end workload in hand, we perform an in-depth investigation of
the viability of various acceleration strategies and provide insights on future DC and
server designs for this emerging workload. Specifically, our work makes the following
contributions:

—Sirius: We construct Sirius, an open end-to-end IPA system with both speech and
image front-ends. In addition to Sirius itself, we compile a query taxonomy spanning
three classes of queries: Voice Command (VC), Voice Query (VQ), and Voice-Image
Query (VIQ) (Section 2).

—Scalability gap: We characterize Sirius on commodity hardware and demonstrate
the scalability gap for this type of workload. We observe that the compute resources
needed to sustain this workload is orders of magnitude higher than traditional DC
workloads. We also perform an analysis of the cycle breakdown of IPA queries and
analyze the computational bottlenecks of Sirius. We show that there is a limited
speedup potential for this workload on general-purpose processors and that acceler-
ation is indeed needed to address the scalability gap (Section 3).

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

2:4 J. Hauswald et al.

—Accelerating Sirius: Based on our cycle breakdown analysis, we extract seven com-
putational bottlenecks comprising 92% of the cycles consumed by Sirius to compose a
C/C++ benchmark suite (Sirius Suite) for acceleration. We port these workloads and
conduct a thorough performance evaluation on a spectrum of accelerator platforms.
The end-to-end Sirius, query taxonomy, input set, Sirius Suite benchmarks, and the
full source code ported across accelerators are available online [ClarityLab 2015]
(Section 4).

—Future server and DC design: Based on our acceleration results, we investigate the
implications for future server designs. After evaluating the trade-offs between per-
formance, power efficiency, and the total cost of ownership (TCO) of a DC, we propose
server and DC designs that significantly reduce the computation gap between user
demand and the current DC’s computation capability (Section 5).

—Extending Sirius: We extend both the Sirius application and benchmark suite to
incorporate the Object Recognition (OR) service, which represents the intelligent
user queries relying on the cutting-edge computer vision techniques. We also conduct
a thorough analysis on the bottlenecks of object recognition and evaluate the latency,
energy efficiency, and TCO when ported to different accelerator platforms (Section 6).

In summary, we find that among the popular acceleration options, including GPU,
Intel Phi, and FPGA, the FPGA-accelerated server is the best server option for a
homogeneous DC design when the design objective is minimizing latency or maximizing
energy efficiency with a latency constraint. FPGA achieves an average 18× reduction
on the query latency across various query types over the baseline multicore system. On
the other hand, GPUs provide the highest TCO reduction on average. GPU-accelerated
servers can achieve an average 8.5× query latency reduction, translating to a 2.3×
TCO reduction. When excluding FPGAs as an acceleration option, GPUs provide the
best latency and cost reduction among the rest of the accelerator choices. On average,
replacing FPGAs using GPUs leads to a 76% longer latency but in return achieves a
43% TCO reduction and simpler software engineering costs.

2. SIRIUS: AN END-TO-END IPA
In this section, we present Sirius: an end-to-end IPA (IPA). We first describe the design
objectives for Sirius and then present an overview of Sirius and a taxonomy of query
types that it supports. Finally, we detail the underlying algorithms and techniques
used by Sirius.

2.1. Sirius Design Objectives
There are three key objectives in the design for Sirius:

(1) Completeness: Sirius should provide a complete IPA service that takes the input of
human voice and images and provide a response to the user’s question with natural
language.

(2) Representativeness: The computational techniques used by Sirius to provide this re-
sponse should be representative of state-of-the-art approaches used in commercial
domains.

(3) Deployability: Sirius should be deployable and fully functional on real systems.

2.2. Sirius Overview: Life of an IPA Query
Figure 2 presents a high-level diagram of the end-to-end Sirius query pipeline. The
life of a query begins with a user’s voice and/or image input through a mobile device.
Compressed versions of the voice recording and image(s) are sent to a server housing
Sirius.

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

Sirius: An Open End-to-End Voice and Vision Personal Assistant 2:5

Fig. 2. End-to-end diagram of the Sirius pipeline.

Table I. Query Taxonomy

Query Type Properties

Voice Command (VC)

Example “Set my alarm for 8am.”
Service ASR
Result Action on user’s device

Queries (#) 16

Voice Query (VQ)

Example “Who was elected 44th president?”
Service ASR & QA
Result Best answer from QA

Queries (#) 16

Voice-Image Query (VIQ)

Example “When does this restaurant close?”
Service ASR, IMM, & QA
Result Best results from IMM & QA

Queries (#) 10

The user’s voice is then processed by the Automatic Speech Recognition (ASR) front-
end, which translates the user’s speech question into its text equivalent using statistical
models. The translated speech then goes through a query classifier (QC) that decides
if the speech is an action or a question. If it is an action, the command is sent back to
the mobile device for execution. Otherwise, the Sirius back-end receives the question
in plain text. Using NLP techniques, the Question Answering (QA) service extracts
information from the input, searches its database, and chooses the best answer to
return to the user. If an image accompanies the speech input, Sirius uses computer
vision techniques to attempt to match the input image to its image database and
return relevant information about the matched image using the Image Matching (IMM)
service. For example, a user can ask What time does this restaurant close? while image(s)
of the restaurant are captured via smart glasses [GoogleGlass 2014]. Sirius can then
return an answer to the query based not only on the speech but also on information
from the image.

As shown in Figure 2, there are several pathways a single query can take based on
the type of directive, whether it be question or action, and the type of input, either
speech only or accompanied by images. To design the input set used with Sirius, we
have identified a query taxonomy of three classes that covers these pathways. Table I
summarizes these query classes providing an example for each, the Sirius services they
exercise, the resulting behavior of Sirius, and the number of queries of that type in our
input set.

Figure 3 illustrates a tiered view of Sirius spanning the query taxonomy it supports,
the services that comprise Sirius, and the algorithmic subcomponents that compose
each service. We describe these services and algorithms in the following section.

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

2:6 J. Hauswald et al.

Fig. 3. Tier-level view of Sirius.

2.3. The Design of Sirius: IPA Services and Algorithmic Components
As shown in Figure 3, Sirius is composed of three IPA services: ASR, QA, and IMM.
These services can be further decoupled into their individual algorithmic components.
To design Sirius to be representative of production grade systems, we leverage well-
known open infrastructures that use the same algorithms as commercial applications.
Speech recognition in Google Voice, for example, has used the speaker-independent
GMM and hidden Markov model (HMM) and is adopting DNNs [Hinton et al. 2012;
Dean et al. 2012]. The OE framework used for QA is an open-source release from
CMU’s prior research collaboration with IBM on the Watson system [Ferrucci et al.
2010]. OE’s NLP techniques, including conditional random fields (CRF), have been
recognized as the state of the art and are used at Google and in other industry QA
systems [Tackstrom et al. 2013]. We design our image matching pipeline based on the
SURF algorithm, which is widely used in industry [Bay et al. 2006; MobileMarketing
2014]. We implement SURF using the Open Source Computer Vision Library (OpenCV)
[Bradski 2000], which is employed in commercial products from companies like Google,
IBM, and Microsoft. The design of these services are described in the remainder of this
section.

2.3.1. Automatic Speech Recognition. The inputs to the ASR are feature vectors repre-
senting the speech segment, generated by fast preprocessing and feature extraction
of the speech. The ASR component relies on a combination of a HMM and either a
GMM or a DNN. Sirius’ GMM-based ASR uses CMU’s Sphinx [Huggins-Daines et al.
2006], whereas the DNN-based ASR includes Kaldi [Povey et al. 2011] and RWTH’s
RASR [Rybach et al. 2011].

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

Sirius: An Open End-to-End Voice and Vision Personal Assistant 2:7

Fig. 4. ASR pipeline.

Fig. 5. Image matching pipeline.

As shown in Figure 4, the HMM builds a tree of states for the current speech frame
using input feature vectors. The GMM or DNN scores the probability of the state
transitions in the tree, and the Viterbi algorithm [Forney 1973] then searches for
the most likely path based on these scores. The path with the highest probability
represents the final translated text output. The GMM scores HMM state transitions
by mapping an input feature vector into a multidimensional coordinate system and
iteratively scores the features against the trained acoustic model.

DNN, however, scores using probabilities from a neural network. The depth of a DNN
is defined by the number of hidden layers where scoring amounts to one forward pass
through the network. In recent years, industry and academia have moved toward DNN
over GMM due to its higher accuracy [Dahl et al. 2012; Huang et al. 2014].

2.3.2. Image Matching. The image matching pipeline receives an input image, attempts
to match it against images in a preprocessed image database, and returns information
about the matched images. The database that is used in Sirius is the Mobile Visual
Search [Chandrasekhar et al. 2011] database. Image keypoints are first extracted from
the input image using the SURF algorithm [Bay et al. 2006]. In Feature Extraction (FE),
the image is downsampled and convolved multiple times to find interesting points at dif-
ferent scales. After thresholding the convolution responses, the local maxima responses
are stored as image keypoints. Figure 5 details the steps in this process. The keypoints
are then passed to the Feature Descriptor (FD) component, where they are assigned an

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

2:8 J. Hauswald et al.

Fig. 6. OE QA pipeline.

orientation vector, and similarly oriented keypoints are grouped into feature descrip-
tors. This process reduces variability across input images, increasing chances of finding
the correct match. The descriptors from the input image are matched to preclustered
descriptors representing the database images by using an approximate nearest neigh-
bor (ANN) search; the database image with the highest number of matches is returned.

2.3.3. Question Answering. The text output from the ASR is passed to OpenEphyra
(OE) [Seide et al. 2011], which uses three core processes to extract textual information:
word stemming, regular expression matching, and part-of-speech tagging. Figure 6
shows a diagram of the OE engine incorporating these components, generating WS
queries and filtering the returned results. The Porter stemming [Porter 1980] algo-
rithm (stemmer) exposes the root of a word by matching and truncating common word
endings. OE also uses a suite of regular expression patterns to match common query
words (what, where, etc.) and filter any special characters in the input. The CRF clas-
sifier [Lafferty et al. 2001] takes a sentence, the position of each word in the sentence,
and the label of the current and previous word as input to makes predictions on the
part of speech for each word of an input query. Each input query is parsed using the
aforementioned components to generate queries to the search engine. Next, filters us-
ing the same techniques are used to extract information from the returned documents;
the document with the highest overall score after score aggregation is returned as the
best answer.

3. REAL SYSTEM ANALYSIS FOR SIRIUS
In this section, we present a real system analysis of Sirius. The experiments throughout
this section are performed using an Intel Haswell server (details are shown later in
Table III).

Scalability gap. To gain insights on the required resource scaling for IPA queries in
modern DCs, we juxtapose the computational demand of an average Sirius query with
that of an average WS query. To perform this experiment, we compare the average

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

Sirius: An Open End-to-End Voice and Vision Personal Assistant 2:9

Fig. 7. Scalability gap and latency.

query latency (execution time) for both applications on a single core at a very low load.
Both Sirius and WS are configured to be memory resident and go no further than main
memory to process a query (i.e., minimum I/O activities).

Figure 7(a) (left) presents the average latency of both WS using open-source Apache
Nutch [ApacheNutch 2010], Ferdman et al. [2012], and Sirius queries. As shown in
the figure, the average Nutch-based WS query latency is 91ms on the Haswell-based
server. In contrast, Sirius query latency is significantly longer, averaging around 19s
across 42 queries spanning our three query classes (VC, VQ, and VIQ from Table I).
Based on this significant difference in the computational demand, we perform a back-
of-the-envelope calculation of how the compute resources (machines) in current DCs
must scale to match the throughput in queries for IPAs and WS.

Figure 7(a) (right) presents the number of machines needed to support IPA queries
as the number of these queries increases. The x-axis shows the ratio between IPA
queries and traditional WS queries. The y-axis shows the ratio of compute resources
needed to support IPA queries relative to WS queries. As shown in the figure, current
DC infrastructures will need to scale its compute resources to 210× its current size
when the number of IPA queries scale to match the number of WS queries. We refer to
this throughput difference as the scalability gap.

Sirius query deep dive. To better understand the IPA query characteristics, we further
investigate the average latency and latency distributions of various query types for
Sirius. Figure 7(b) presents the average latency across query types including traditional
WS, VC, VQ, and VIQ. As shown in the figure, the latency of all three Sirius query types
are significantly higher than that of WS queries. The shortest query type is VC, which
only uses the ASR service. Yet it still requires orders of magnitude more computation
than WS. The longest query type is VIQ, which uses all three services including ASR,
IMM, and QA. Among all three services, QA consistently consumes the most compute
cycles.

Figure 8(a) presents the latency distribution for each Sirius service. As shown in the
figure, QA has the highest variability in latency, ranging from 1.7s to 35s depending
on the input query. Figure 8(b) further presents the breakdown of execution time
among QA’s hot components (described later in this section) across the complete VQ
query input set (shown in Table II). The reason for this high latency variability is not
immediately clear from inspecting the query input set, especially when considering the

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

2:10 J. Hauswald et al.

Fig. 8. Sirius variability across query types and causes.

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

Sirius: An Open End-to-End Voice and Vision Personal Assistant 2:11

Table II. Voice Query Input Set

Query Number Query
q1 “Where is Las Vegas?”
q2 “What is the capital of Italy?”
q3 “Who is the author of Harry Potter?”
... ...
q15 “What is the capital of Cuba?”
q16 “Who is the current president of the United States?”

Fig. 9. Cycle breakdown per service.

small difference between Q2 and Q15 in Table II. However, after further investigation,
we identified that the high variance is primarily due to the runtime variability of
various document filters in the NLP component used to select the most fitting answer
for a given query. Figure 8(c) demonstrates the correlation between latency and the
number of hits in the document filters. The other services, ASR and IMM, have very low
query to query variability. Next, we investigate the cycle breakdown of the algorithmic
components that comprise each service.

Cycle breakdown of Sirius services. To identify the computational bottlenecks of
each service, we perform top-down profiling of hot algorithmic components for each
service, shown in Figure 3, using Intel VTune [IntelVTune 2015]. Figure 9 presents
the average cycle breakdown results. Across services, a few hot components emerge as
good candidates for acceleration. For example, a high percentage of the execution for
ASR is spent on scoring using either GMM or DNN. For QA, on average, 85% of the
cycles are spent in three components including stemming, regular expression pattern
matching, and CRF; for IMM, the majority of cycles are spent either performing feature
extraction or description using the SURF algorithm.

We then identify the architectural bottlenecks for these hot components to inves-
tigate the performance improvement potential for a general-purpose processor. Fig-
ure 10 presents the instructions per cycle (IPC) and potential architectural bottlenecks

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

2:12 J. Hauswald et al.

Fig. 10. IPC and bottleneck breakdown.

(including front-end, speculation, and back-end) for each component, identified using
Intel VTune [IntelVTune 2015]. A few of the service components, including DNN and
Regex, execute relatively efficiently on Xeon cores. This graph indicates that even with
all stall cycles removed (perfect branch prediction, infinite cache, etc.), the maximum
speedup is bound by around 3×. Considering the orders of magnitude difference indi-
cated by the scalability gap, further acceleration is needed to bridge the gap.

4. ACCELERATING SIRIUS
In this section, we describe the platforms and methodology used to accelerate the key
components of Sirius. We also present and discuss the results of accelerating each of
these components across four different accelerator platforms.

4.1. Accelerator Platforms
We use a total of four platforms, summarized in Table III, to accelerate Sirius. Our
baseline platform is an Intel Xeon Haswell CPU running single-threaded kernels.

We summarize the advantages and disadvantages of each accelerator platform next:

—Multicore CPU. Advantages: High clock frequency, not limited by branch divergence.
Disadvantages: Least amount of threads available.

—GPU. Advantages: Massively parallel. Disadvantages: Power hungry, custom ISA,
hard to program, large data transfer overheads, limited branch divergence handling.

—Intel Phi. Advantages: Many core, standard programming model (same ISA), manual
porting optional/compiler help, handles branch divergence, high bandwidth. Disad-
vantages: Data transfer overheads, relies on compiler. Note: One core is used for the
operating system running on the device itself.

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

Sirius: An Open End-to-End Voice and Vision Personal Assistant 2:13

Table III. Platform Specifications

HW Memory Peak
Model Frequency Cores (#) Threads (#) Memory Bandwidth TFLOPS
Intel Xeon 3.40GHz 4 8 12GB 25.6GB/s 0.5
E3-1240 V3
NVIDIA 1.05GHz 8* 12,288 2GB 224GB/s 3.2
GTX 770
Intel Xeon 1.05GHz 60 240 8GB 320GB/s 2.1
Phi 5110P
Xilinx Virtex-6 400MHz N/A N/A 512MB 6.40GB/s 0.5
ML605

∗Core = SM (streaming multiprocessor), 2,048 threads/SM.

Table IV. Sirius Suite and Granularity of Parallelism

Benchmark Baseline Input Set Data Granularity
Gaussian Mixture Model (GMM)a CMU Sphinx HMM states HMM state
Deep Neural Network (DNN)a RWTH RASR HMM states Matrix multiplication
Porter Stemming (Stemmer)b Porter 4M word list Individual word
Regular Expression (Regex)b SLRE 100/400 expr./sent. Regex-sentence pair
Conditional Random Fields (CRF)b CRFsuite CoNLL-2000 Sentence
Feature Extraction (FE)c SURF JPEG image Image tile
Feature Description (FD)c SURF Vector of keypoints Keypoint

aExtracted from ASR service: CMU Sphinx [Huggins-Daines et al. 2006], RWTH RASR [Rybach et al. 2011].
bExtracted from QA service: Porter [1980], SLRE [Lyubka 2009], CRFsuite [Okazaki 2007], CoNLL-2000
[Tjong et al. 2000].
cExtracted from IMM service: SURF [Bay et al. 2006].

—FPGA. Advantages: Can be tailored to implement very efficient computation and
data layout for the workload. Disadvantages: Runs at a much lower clock frequency,
expensive, hard to develop for and maintain with software updates.

4.2. Sirius Suite: A Collection of IPA Compute Bottlenecks
To investigate the viability and trade-offs of accelerating IPAs, we extract the key
computational bottlenecks of Sirius (described in Section 3) to construct a suite of
benchmarks that we call Sirius Suite. Sirius Suite and its implementations across the
described accelerator platforms are available alongside the end-to-end Sirius applica-
tion [ClarityLab 2015]. As a basis for Sirius Suite, we port existing open-source C/C++
implementations available for each algorithmic component to our target platforms. We
additionally implemented stand-alone C/C++ benchmarks based on the source code of
Sirius where none were currently available. The baseline implementations are summa-
rized in column 2 of Table IV. For each Sirius Suite benchmark, we built an input set
representative of IPA queries. The table shows the granularity at which each thread
performs the computation on the accelerators. For example, both GMM and DNN ker-
nels receive input feature vectors from the HMM search, which are all scored in parallel
but at different levels of abstraction, respectively, based on each implementation.

4.3. Porting Methodology
The common porting methodology used across all platforms is to exploit the large
amount of data-level parallelism available throughout the processing of a single IPA
query. We describe the platform-specific highlights of our porting efforts in the following
sections.

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

2:14 J. Hauswald et al.

4.3.1. Multicore CPU. We use the Pthread library to accelerate the kernels on the mul-
ticore platform by dividing the size of the data. Each thread is responsible for a range
of data over a fixed number of iterations. This approach allows each thread to run
concurrently and independently, synchronizing only at the end of the execution.

For the image matching kernels, we preprocess the input images for feature extrac-
tion by tiling the images. Each thread of the CPU is assigned one or more tiles of the
input image (depending on the size of each tile). This allows us to spawn threads once
at the beginning of execution and synchronize threads at the end instead of paralleliz-
ing at a smaller granularity within the SURF algorithm, which would require multiple
synchronizations between loops. However, as the tile size decreases, the number of
“good” keypoints decreases, so we fix the tile size to a minimum of 50×50 per thread.

4.3.2. GPU. We use NVIDIA’s CUDA library to port the Sirius components to the
NVIDIA GPU. To implement each CUDA kernel, we varied and configured the GPU
block and grid sizes to achieve high resource utilization, matching the input data to
the best thread layout. We ported additional string manipulation functions currently
not supported in CUDA for the stemmer kernel.

4.3.3. Intel Phi. We port our Pthread versions to the Intel Phi platform, leveraging
the ability of the target compiler to parallelize the loops on the target platform. For
this, we use Intel’s ICC cross-compiler. The Phi kernel is built and run directly on
the target device, allowing for rapid prototyping and debugging. On the Phi platform,
we sweep the total amount of threads spawned in increments of 60, increasing the
number of hardware threads per core. For some kernels, the maximum number of
threads (with enough input data) did not always yield the highest performance. To
investigate the potential of this platform to facilitate ease of programming, we use
the standard programming model and custom compiler to extract performance from
the platform. As such, the results represent what can be accomplished with minimal
programmer effort.

4.3.4. FPGA. We use previously published details of FPGA implementations for sev-
eral of our Sirius benchmarks in this work. However, due to limited published details
for two of our workloads and to gain further insights, we design our own FPGA imple-
mentations for both GMM and Stemmer and evaluate them on a Xilinx FPGA.

GMM. The major computation of the algorithm lies in three nested loops that itera-
tively score the feature vector against the training data. This training data comes from
an acoustic model, a language model, and a dictionary in the forms of a means vector, a
precalculated (precs) vector, a weight vector, and a factor vector. All of this data is used
to generate a score for the probability of an HMM state transition. Our focus when im-
plementing the algorithm on the FPGA was to maximize parallelization and pipeline
utilization, which led to the design presented in Figure 11. This figure depicts both a
core that computes the score of a single iteration of the outermost loop and a callout
of a log differential unit. The log differential unit is used to fully parallelize the inner-
most loop, whereas the entire core can be instantiated multiple times to parallelize the
outermost loop. Because of this, the design is highly scalable, as multiple cores can be
used to fill the FPGA fabric. The middle loop of the algorithm was not parallelizable,
however, and is represented by the Log Summation unit. With this design, we were
able to create a high throughput device with a linear pipeline.

Stemmer. The Stemmer algorithm computes the root of a word by checking for multi-
ple conditions, such as the word’s suffixes or roots. Figure 12 summarizes a single step
for our stemmer implementation. By taking advantage of the mutual exclusivity of test
conditions, we were able to parallelize these comparisons, which allowed the FPGA to

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

Sirius: An Open End-to-End Voice and Vision Personal Assistant 2:15

Fig. 11. FPGA GMM diagram.

Fig. 12. FPGA stemmer diagram.

Table V. Speedup of Sirius Suite Across Platforms

Service Benchmark CMP GPU Phi FPGA

ASR GMM 3.5 70.0 1.1 169.0
DNN 6.0* 54.7* 11.2 110.5 [Farabet et al. 2011]
Stemmer 4.0 6.2 5.6 30.0

QA Regex 3.9 48.0 [Vasiliadis et al. 2009] 1.1 168.2 [Yang et al. 2008]
CRF 3.7 3.8 [Piatkowski 2011] 4.7 7.5 [Swaminathan et al. 2002]

IMM FE 5.2 10.5 2.5 34.6 [Bouris et al. 2010]
FD 5.9 120.5 12.7 75.5 [Bouris et al. 2010]

∗This includes DNN and HMM combined.

achieve a much lower latency than the original Porter algorithm. Our implementation
performs multiple vector operations simultaneously to count vowels, vowel-consonant
pairs, and compare suffixes. Together, these operations select the correct word shift for
the specific step. We formed a single pipelined core based upon six steps dealing with
the different possibilities of suffixes. We instantiate multiple cores to fill the FPGA
fabric to deliver maximum performance.

4.4. Accelerator Results
Table V and Figure 13 present the performance speedup achieved by the Sirius kernels
running on each accelerator platform, organized by service type. For the numbers

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

2:16 J. Hauswald et al.

Fig. 13. Heatmap of acceleration results.

from the prior literature, we scale the FPGA speedup number to match our FPGA
platform based on fabric usage and area reported in prior work. We also use numbers
from the literature for kernels (Regex and CRF) that were already ported to the GPU
architecture and yielded better speedups than our implementations.

4.4.1. ASR. The GMM implementation, extracted from CMU Sphinx’s acoustic scor-
ing, had the best performance on the GPU (70×) after optimizations. These custom
optimizations on the GPU achieved an order of magnitude improvement by optimizing
the data structure layout to ensure coalesced global memory accesses. This leveraged
concurrent reads to sequential memory positions for a warp of 32 threads. In addition,
it was possible to store the entire data required for the GMM in the GPU memory
(2GB) during the deployment time, reducing communication between the host and de-
vice. The Phi platform did not perform as well as the GPU, indicating that the custom
compiler may not have achieved the optimal data layout. The FPGA implementation
using a single GMM core achieved a speedup of 56×; when fully utilizing the FPGA
fabric, we achieved a 169× speedup using three GMM cores. RWTH’s DNN includes
both multithreaded and GPU versions out of the box. The RWTH’s DNN parallelizes
the entire framework (both HMM search and DNN scoring) and achieves good speedup
in both cases. In the cases where we use a custom kernel or cite literature, we assume
a 3.7× speedup for the HMM [Chong et al. 2011] as a reasonable lower bound.

4.4.2. QA. The NLP algorithms as a whole have very similar performance across plat-
forms because of the nature of the workload: high input variability with many test
statements causes high branch divergence. Fine-tuning the stemming algorithm on
the Phi to spawn 120 threads instead of the maximum and switching from allocating a
range of data per thread to interlaced array accesses yields a better performance given
the lower number of threads used. The FPGA stemmer implementation achieved a 6×
speedup over the baseline with a single core using only 17% of the FPGA. Scaling the
number of cores to fully utilize the resources of the FPGA yielded a 30× speedup over
the baseline. The stemmer algorithm contains many test statements and is not well
suited for SIMD operations. We attempted to improve our initial stemmer implemen-
tation for the GPU by replacing most of the conditional branches with efficient XOR
operations [Singh et al. 2010]. However, our fine-grained XOR-based implementation
performed worse than our initial version due to additional synchronization between
threads.

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

Sirius: An Open End-to-End Voice and Vision Personal Assistant 2:17

Fig. 14. Latency across platforms for each service.

4.4.3. Image Matching. The image processing kernels achieved the best speedup on the
GPU, which uses heavily optimized OpenCV [Bradski 2000] SURF implementations
yielding speedups of 10.5× and 120.5× for FE and FD, respectively. Prior work shows
that FPGA yields better FE speedups but does not show similar increases for FD. The
tiled multicore version yields good speedup, but the performance does not scale as
well on the Phi because the number of tiles is fixed, which means that there is little
advantage to having more threads available. The GPU version has better performance
because it uses a data layout explicitly optimized for a larger number of threads.

5. IMPLICATIONS FOR FUTURE SERVER DESIGN
In this section, we investigate the performance, power, and cost-efficiency trade-offs
when configuring servers with different accelerator platforms for Sirius.

5.1. Server Level Design
We first investigate the end-to-end latency reduction and the power efficiency achieved
across server configurations for Sirius’ services, including ASR, QA, and IMM.

5.1.1. Latency Improvement. Figure 14 presents the end-to-end query latency across
Sirius’ services on a single leaf node configured with each accelerator. We present both
results for ASRs that use GMM/HMM and DNN/HMM as key algorithms. The latency
breakdown for all hot components within a service is also presented in the figure. For
QA, we focus on the NLP components comprising 88% of the cycles of QA, as search
has already been well studied [Ferdman et al. 2012].

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

2:18 J. Hauswald et al.

Fig. 15. Performance per watt.

Table VI. Platform Power and Cost

Platform Power TDP (W) Cost ($)
Intel Xeon CPU E3-1240 80 250
NVIDIA GPU GTX 770 230 399
Intel Xeon Phi 5110P 225 2,437
Xilinx Virtex-6 FPGA 22 1,795

Our baseline in this figure—CMP—is the latency of the original algorithm imple-
mentations of Sirius running on a single core of an Intel Haswell server, described in
Table III. CMP (subquery) is our Pthreaded implementation of each service exploit-
ing parallelism within a single query, thus reducing the single query latency. This
is executed on four cores (eight hardware threads) of the Intel Haswell server. CMP
(subquery) in general achieves a 25% latency reduction over the baseline. Across all
services, the GPU and FPGA significantly reduce the query latency. For example, the
FPGA implementation of ASR (GMM/HMM) reduces the speech recognition query la-
tency from 4.2s to only 0.19s. The FPGA outperforms the GPU for most of the services
except ASR (DNN/HMM). Although Intel Phi can reduce the latency over the single
core baseline (CMP), Phi is generally slower than the Pthreaded multicore baseline.

5.1.2. Energy Efficiency. Figure 15 presents the energy efficiency (performance/watt)
for each accelerator platform across four services of the Sirius pipeline, normalized
by the performance/watt achieved by using all cores on a multicore CPU by query-
level parallelism. Here performance is defined as 1/latency. Table VI presents the
power (TDP) for each accelerator platform. The FPGA has the best performance/watt,
exceeding every other platform by a significant margin, with more than 12× energy
efficiency over the baseline multicore. The GPU’s performance/watt is also higher than
the baseline for three of four services. Its performance/watt is worse than the baseline
for QA, mainly due to its moderate performance improvement for this service.

5.2. DC Design
Based on the latency and energy-efficiency trade-offs for server platforms discussed in
the previous section, we evaluate multiple design choices for DCs composed of acceler-
ated servers to improve performance (throughput) and reduce the TCO.

5.2.1. Throughput Improvement. The latency reduction shown in Figure 14 can translate
to significant throughput improvement. Figure 16 presents the throughput improve-
ment achieved using various acceleration platforms without degrading latency beyond

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

Sirius: An Open End-to-End Voice and Vision Personal Assistant 2:19

Fig. 16. Throughput across services.

Fig. 17. Throughput improvement at various load levels modeled as an M/M/1 queue (darker is a higher
load intensity for each platform).

the baseline. Similar to Figures 14 and 15, the CMP baseline executes the original
Sirius workload on the Intel Haswell platform, where all four cores are utilized to
serve queries, thus achieving similar throughput as CMP (subquery level). Note, how-
ever, that CMP’s query latency is significantly longer because CMP (subquery level)
exploits parallelism within a single query. Figure 16 demonstrates that significant la-
tency reductions achieved by the GPU and FPGA translate to significant throughput
improvement. For example, the GPU provides 13.7× throughput improvement over the
baseline CMP for ASR (DNN/HMM), whereas the FPGA achieves 12.6× throughput
for IMM. For QA, the throughput improvement across the platforms is generally more
limited than other services.

Figure 17 presents the throughput improvement achieved using each acceleration
platform at various load levels (the server is modeled as an M/M/1 queue). Compared
to Figure 16, which presents the throughput improvement at 100% load, when con-
sidering queuing effect, the lower the server load, the bigger impact latency reduction
would have on throughput improvement. In other words, Figure 16 demonstrates a
lower bound of throughput improvement for a queuing system. Since DC servers often
operate at medium-to-low load, as shown in Figure 17, significant higher throughput
improvement can be expected.

5.2.2. TCO Analysis. Improving throughput allows us to reduce the amount of comput-
ing resources (servers) needed to serve a given load. However, reducing the number of

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

2:20 J. Hauswald et al.

Table VII. TCO Model Parameters

Parameter Value
DC Depreciation Time 12 years

Server Depreciation Time 3 years
Average Server Utilization 45%

Electricity Cost $0.067/kWh
DC Price $10/W
DC Opex $0.04/W

Server Opex 5% of Capex/year
Server Price (baseline) $2,102 [ThinkMate 2014]
Server Power (baseline) 163.6W [ThinkMate 2014]

PUE 1.1

Fig. 18. TCO across platforms for each service.

servers may or may not lead to reduction in the TCO of a DC. Although reducing the
machines leads to reduction on DC construction cost and power/cooling infrastructure
cost, we may increase the per-server capital or operational expenditure cost either by
additional accelerator purchase cost or the energy cost. Here we present a cost analysis
to evaluate the implication on the DC cost when using each accelerated server platform.

We perform our TCO analysis using the TCO model recently proposed by Google
[Barroso et al. 2013]. The parameters used in our TCO model are described in Table VII.
The server price and power usage are based on the following server configuration based
on the OpenCompute Project: 1 CPU Intel Xeon E3-1240 V3 3.4GHz, 32GB of RAM,
and two 4TB disks [ThinkMate 2014].

Figure 18 presents the DC TCOs with various acceleration options, normalized by
the TCO achieved by a DC that uses only CMPs. Overall, the FPGA and GPU provide
high TCO reduction. For example, the GPU achieves more than 8× TCO reduction for
ASR (DNN) and the FPGA achieves over 4× TCO reduction for IMM. We will further
discuss the TCO results and use them to derive our DC designs in the next section.

5.2.3. Homogeneous Datacenter Design. Based on latency results from Figure 14 and
TCO results from Figure 18, we first investigate the trade-offs when designing a homo-
geneous DC—that is, all servers in the DC have the same configuration. Homogeneous
DCs are often desirable, as they minimize the management and maintenance over-
head [Mars and Tang 2013].

When designing a DC, it would be ideal to maximize performance (e.g., minimize
query latency or improve throughput for a given latency constraint) and minimize
the TCO. However, trade-offs may need to be made as to which objective should be
prioritized if both cannot be optimized by the same design. Figure 19 presents the
trade-offs between the query latency improvement and the TCO improvement for each

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

Sirius: An Open End-to-End Voice and Vision Personal Assistant 2:21

Fig. 19. Trade-off between TCO and latency.

Table VIII. Homogeneous DC

Hmg.
latency

Hmg.
TCO

(with L constraint)
Without

{FPGA, GPU}

With
FPGA

ASR (GMM)

FPGA GPU FPGAASR (DNN)
QA

IMM

Without
FPGA

ASR (GMM)

GPUASR (DNN)
QA

IMM

Without
{FPGA, GPU}

ASR (GMM)

CMPASR (DNN)
QA

IMM

server option across four Sirius services. The x-axis presents latency improvement, and
the y-axis shows the TCO improvement.

As shown in the figure, FPGA achieves the lowest latency (highest latency improve-
ment) among all accelerating platforms for three out of four services that we studied.
However, the FPGA’s relatively high purchase cost allows GPUs to achieve similar or
higher TCO savings as FPGAs with smaller latency reduction. When the FPGA is not
considered an option, the GPU achieves the optimal latency and TCO for all services.
Even with the FPGA as an accelerator candidate, a GPU-accelerated DC provides the
best latency and TCO for ASR using DNN.

Table VIII summarizes the homogeneous DC design for each of the main Sirius
services under different conditions and optimization objectives. We present three first-
order design objectives: minimizing latency, minimizing TCO with a latency constraint,
and maximizing energy efficiency with a latency constraint, shown as three rows of the

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

2:22 J. Hauswald et al.

Table IX. Heterogeneous DC

Hetero.
Latency

Hetero.
TCO

(with L constraint)

Hetero.
Power Eff.

(with L constraint)

With
FPGA

ASR (GMM) FPGA GPU
FPGAASR (DNN) GPU(3.6x)

QA FPGA FPGA(20%)
IMM FPGA(19%)

Without
FPGA

ASR (GMM)

GPUASR (DNN)
QA

IMM

Without
{FPGA, GPU}

ASR (GMM)

CMPASR (DNN)
QA

IMM

table. The latency constraint here is CMP (subquery) latency shown in Figure 14. The
first row (with FPGA, without FPGA, without FPGA or GPU) also shows the design
constraints for the accelerator candidates.

Key observation. In conclusion, FPGAs and GPUs are the top two candidates for
homogeneous accelerated DC designs across all three design objectives. An FPGA-
accelerated DC allows DCs to minimize latency and maximize energy efficiency for
most of the services and is the best homogeneous design option for those objectives. Its
power efficiency is desirable for DCs with power constraints, especially for augmenting
existing filled DCs that are equipped with capped power infrastructure support. It also
improves TCO for all four services. On the other hand, FPGA-accelerated DCs incur
higher engineering cost than the rest of the platforms. For DCs where engineering cost
needs to be under a certain constraint, GPU-accelerated homogeneous DCs achieve
relatively low latency and high throughput. They also achieve similar or higher TCO
reduction than FPGA due to the low purchase cost. GPUs could be a desirable option
over FPGAs when the high engineering overhead of FGPA implementation is a concern,
especially given the quick workload churn (e.g., binaries are updated on the monthly
basis) in modern DCs.

5.2.4. Heterogeneous (Partitioned) Datacenter Design. Next we explore the design options
for partitioned heterogeneous DCs. Because each service can run on its most suitable
platform in a partitioned heterogeneous DC, this strategy may provide additional op-
portunities for further latency reduction or TCO reduction. Table IX shows various DC
design choices for different design objectives (rows), accelerator candidate sets (with
FPGA, without FPGA, and without FPGA and GPU), and services (columns). The
numbers in parentheses show the improvement on the metric of the specific design
objective of that row when the DC design switches from a homogeneous baseline to a
heterogeneous partitioned design.

As shown in the first row of the table, when designing a partitioned heterogeneous
DC for ASR, QA, and IMM services, if all accelerators are considered viable candidates,
GPUs can be used to optimize the latency for ASR (DNN) and achieves 3.6× latency
reduction for that service compared to the homogeneous DC using FPGA across all
services. Similarly, using FPGAs for QA and IMM achieves 20% and 19% TCO im-
provement, respectively.

Key observation. In conclusion, the partitioned heterogeneity in our study does not
provide much benefit over the homogeneous design. The amount of benefit is certainly

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

Sirius: An Open End-to-End Voice and Vision Personal Assistant 2:23

Fig. 20. Latency, energy efficiency, and TCO of GPU and FPGA DCs.

Fig. 21. Bridging the scalability gap.

dependent on the workload partition across services. However, overall, most of the
algorithms and services in the Sirius workload exhibit a similar trend in terms of
preferences for accelerators for the FPGA and GPU, among others. There is also addi-
tional cost associated with managing a heterogeneous/partitioned DC that needs to be
justifiable by the performance gain.

5.2.5. Query-Level Results for DC Designs. In previous sections, we focused on latency,
energy-efficiency, and TCO trade-offs for various acceleration options across three ser-
vices in Sirius. In this section, we focus on these trade-offs across three query types
supported by Sirius, namely VC, VQ, and VIQ. Figure 20 presents the query latency of
three query types achieved by the best two homogeneous DCs, composed of GPU- and
FPGA-accelerated servers, respectively. In addition to query latency, energy efficiency
of the servers and the TCO of the DCs to support these query types are also presented.
GPU-accelerated homogeneous DCs achieve 10× latency reduction on average, and
FPGA-accelerated DCs achieve a 16× reduction. The accelerated DCs also reduce the
TCO on average by 2.6× and 1.4×, respectively.

Figure 21 further presents the latency reduction of these two accelerated DCs and
how homogeneous accelerated DCs can significantly reduce the scalability gap for DCs,

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

2:24 J. Hauswald et al.

Fig. 22. Object recognition pipeline.

from the current 165× resource scaling, shown in Figure 7, down to 16× and 10× for
GPU- and FPGA-accelerated DCs, respectively.

6. EXTENDING SIRIUS WITH OR SERVICE
Recognizing the prevalence of deep learning in WSC applications, we introduce a convo-
lutional neural network (CNN)-based OR service, expanding the capabilities of Sirius
with a voice detection query. With this service, we investigate the scaling of our conclu-
sions to recent deep learning–based applications. In this section, we describe the design
of an OR service and investigate its real system behavior. Similar to the other Sirius
services, we present the study of its implications for future server and DC designs.

6.1. Design of Object Recognition
The object recognition design is based on the R-CNN [Girshick et al. 2014] that lever-
ages the strength of CNNs and selective search [Uijlings et al. 2013], which represents
the cutting-edge implementation of object recognition in worldwide visual recognition
competition [Russakovsky et al. 2015].

Two major components are included in R-CNN [Girshick et al. 2014] to recognize the
objects within a image: region proposals extraction and feature computation with CNN,
as shown in Figure 22. During region proposals extraction, the image is partitioned
and segmented into locations that show high potential in containing the objects to be
recognized without exhaustive search. Selective search [Uijlings et al. 2013] is used to
exploit the structure of the image as well as apply diverse region grouping strategies
to generate a small set of high-quality region proposals. After the region proposals
are identified, a large CNN [Krizhevsky et al. 2012] is used to compute the feature
vectors for each region proposal. A region proposal is warped to a mean-subtracted
227×227 RGB image and then processed through five convolutional layers and two
fully connected layers with forward propagation. At the training time, feature vectors
computed by the CNN are used to train a linear classifier for each specific object class,
which is then used to recognize the objects within a new image. The dataset used to train
the classifier is from the worldwide competition of visual recognition [Russakovsky et al.
2015].

We introduce a new query class named Voice-Detect Query (VDQ) that exercises
three Sirius services along its execution pathway: ASR, OR, and QA. A typical VDQ
could be a user sending a voice audio asking Which are the tropical fruits? along with
an image containing several fruits captured via a smart phone or wearable device. We
extend our input set to include eight sample queries of this type.

6.2. Real System Analysis of Object Recognition
For our analysis of the OR service, the experiment setup is the same as the rest of
the Sirius services (details in Table III). Our real system measurements show that the
latency of a VDQ is also orders of magnitude higher than a WS query (25×). Although
QA still dominates the query latency, OR consumes 12% of the query execution time.

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

Sirius: An Open End-to-End Voice and Vision Personal Assistant 2:25

Fig. 23. Execution breakdown of object recognition.

We also notice that the latency of OR service is quite stable across different queries
with variance less than 18ms.

Similar to our study with the rest of Sirius services, we perform top-down profiling
to identify the computational bottlenecks of OR service. Figure 23(a) shows that most
of the computational cycles (98%) are spent in the CNNs, extracting the features of
the image regions and classifying the objects within the regions. Figure 23(b) presents
the hardware performance counters profiling the execution of OR service. As the figure
shows, OR service executes quite efficiently on Xeon cores and achieves high IPC,
leaving little room for performance speedup on the Xeon to address the large scalability
gap between WS and VDQ.

6.3. Accelerating Object Recognition and Its Implications
In this section, we accelerate the OR service across four different accelerator platforms
and discuss its implications on future server and DC design.

6.3.1. CNN. We extract the key computational bottleneck (CNN) of OR into Sirius
Suite. The CNN kernel is then ported to the four accelerator platforms as shown in
Table III using the same methodology illustrated in Section 4.3.

Figure 24 presents the performance speedup for object recognition across platforms.
The object recognition achieves the best speedup of 31.8× on the FPGA based on the
results reported in the literature [Farabet et al. 2011]. We measure the GPU speedup
using the cutting edge CNN implementation from NVIDIA cuDNN [2015] and Caffe [Jia
et al. 2014] on a GPU, as shown in Table III. The GPU version also improves the latency
dramatically with 9.6× speedup. Furthermore, the CMP (subquery) implementation
achieves 1.9× speedup, whereas the Phi fails to reduce the latency. This is because
CMP takes advantage of batching image segments while the Phi does not.

6.3.2. Implications on Datacenter Design. We evaluate the design choices for DCs in terms
of throughput and TCO based on the latency and energy-efficiency results of object
recognition on the accelerator platforms.

Using the similar methodology of Figure 16 and 18, we compare the throughput
of DCs equipped with these accelerators to a baseline DC composed only of CMPs.
As shown in Figure 25(a), the FPGA provides the most throughput improvement by
4.9× over the baseline, whereas the GPU achieves 2.1× throughput improvement.

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

2:26 J. Hauswald et al.

Fig. 24. Latency across platforms.

Fig. 25. Throughput and TCO analysis across platforms for OR.

To better understand the implications of latency, energy-efficiency, and throughput
improvements on DC design, we provide the TCO analysis results in Figure 25(b) with
the TCO model described in Table VII. In general, FPGA and GPU platforms achieve
TCO reduction by 1.67× and 1.33×, respectively, over the baseline.

Figure 26 presents the query latency for VDQ type of queries achieved by the best
two accelerator platforms using the FPGA and GPU for the DC design. Similar to
Figure 20, energy efficiency of the servers and the TCO of the DCs to support this
query type are also presented. FPGA-accelerated DCs achieve 14× latency reduction on
average, whereas GPU-accelerated DCs achieve 7× latency reduction. The accelerated
DCs also improve the energy efficiency on average by 23.4× (FPGA based) and 1.07×
(GPU based). In addition, the TCO of the accelerated DCs reduces on average by 1.29×
(FPGA based) and 1.94× (GPU based).

Key observation. In conclusion, for object recognition using CNN, the FPGA and GPU
platforms are still the best options to provide the most latency reduction (31.8× and
9.6×, respectively) as well as the TCO improvement (1.67× and 1.33×, respectively).
The CNN that dominates the computation of object recognition is mainly composed

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

Sirius: An Open End-to-End Voice and Vision Personal Assistant 2:27

Fig. 26. Latency, energy efficiency, and TCO of GPU and FPGA DCs for VDQ.

of matrix multiplies, which benefits from custom implementations on the GPU and
FPGA exploiting the massive parallelism afforded by these accelerators. This translates
into significant latency reduction over the general-purpose platform (CMP). Similar to
Figure 21, using GPUs and FPGAs to accelerate CNN-based workloads also bridges
the scalability gap for future DCs.

7. RELATED WORK
In addition to prior work focusing on DC efficiency [Mars et al. 2011, 2012; Tang et al.
2013a, 2013b; Yang et al. 2013; Mars and Tang 2013; Zhang et al. 2014; Laurenzano
et al. 2014; Petrucci et al. 2015; Hsu et al. 2015], a heterogeneous server design [Iyer
et al. 2011] was proposed for speech and image recognition, where the GMM scoring and
image matching algorithms were ported to hardware accelerators. However, their work
does not address the acceleration of NLP algorithms or DNN-based speech recognition.
Custom accelerators for specific cloud applications have also been proposed, such as
those for memcached [Lim et al. 2013] and database systems [Kocberber et al. 2013]
showing the growing need for specialized hardware in server applications. The Catapult
project [Putnam et al. 2014] at Microsoft Research has ported key components of Bing’s
page ranking to FPGAs. In this work, we focus on accelerating the components that
make up an IPA, focusing on their impact in the end-to-end system.

Prior work has also investigated acceleration of individual components of Sirius
on various platforms. For speech recognition systems using GMM/HMM, prior work
characterizes and accelerates the workload in hardware [Krishna et al. 2003; Mathew
et al. 2003]. In the past, GPUs were successful in accelerating speech recognition’s
GMM [Dixon et al. 2009], and more recently ASR was ported using a hybrid CPU-
GPU approach [Kim et al. 2012]. The Carnegie Mellon In Silicon Vox [Lin et al. 2007]
project has implemented an FPGA-based GMM/HMM speech recognizer with a rela-
tively small vocabulary. Image processing algorithms have been shown to map well
to accelerators [Hauswald et al. 2014; Rublee et al. 2011; Dinh et al. 2014]. Key NLP
techniques also show promising results when ported to hardware [Sun et al. 2014;
Lunteren et al. 2012]. Additionally, low-power accelerators for DNNs [Chen et al. 2014;
Esmaeilzadeh et al. 2012] have garnered the interest of researchers, as DNNs can be
parallelized easily but have better accuracy compared to conventional machine learn-
ing techniques [Graves et al. 2013].

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

2:28 J. Hauswald et al.

8. CONCLUSION
This work introduces Sirius, an open end-to-end IPA application modeled after popular
IPA services such as Apple’s Siri. Sirius leverages well-established open infrastructures
for speech recognition, computer vision, and QA systems. We use Sirius to investigate
the performance, power, and cost implications of hardware accelerator–based server
architectures for future DC designs. We show that GPU- and FPGA-accelerated servers
can improve the query latency on average by 8.5× and 15×. Leveraging the latency
reduction, GPU- and FPGA-accelerated servers can reduce the TCO by 2.3× and 1.3×,
respectively.

ACKNOWLEDGMENT

We thank our anonymous reviewers for their feedback and suggestions.

REFERENCES
ABIResearch. 2013. Wearable computing devices, like Apple iWatch, will exceed 485 million annual

shipments by 2018. Retrieved February 18, 2016, from https://www.abiresearch.com/press/wearable-
computing-devices-like-apples-iwatch-will.

ApacheNutch. 2010. Apache Nutch Home Page. Retrieved February 18, 2016, from http://nutch.apache.org.
AppleSiri. 2011. Apple’s Siri. Retrieved February 18, 2016, from https://www.apple.com/ios/siri/.
Luiz Andre Barroso, Jimmy Clidaras, and Urs Holzle. 2013. The Datacenter as a Computer: An Introduction

to the Design of Warehouse-Scale Machines, Second Edition. Morgan & Claypool.
Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. 2006. SURF: Speeded up robust features. In Computer

Vision—ECCV 2006. Lecture Notes in Computer Science, Vol. 3951. Springer, 404–417.
Dimitris Bouris, Antonis Nikitakis, and Ioannis Papaefstathiou. 2010. Fast and efficient FPGA-based feature

detection employing the SURF algorithm. In Proceedings of the 2010 18th IEEE Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM’10). IEEE, Los Alamitos, CA,
3–10. DOI:http://dx.doi.org/10.1109/FCCM.2010.11

G. Bradski. 2000. Dr. Dobb’s Journal of Software Tools. OpenCV Library.
Vijay R. Chandrasekhar, David M. Chen, Sam S. Tsai, Ngai-Man Cheung, Huizhong Chen, Gabriel Takacs,

Yuriy Reznik, Ramakrishna Vedantham, Radek Grzeszczuk, Jeff Bach, and Bernd Girod. 2011. The
Stanford mobile visual search data set. In Proceedings of the 2nd Annual ACM Conference on Multimedia
Systems (MMSys’11). ACM, New York, NY, 117–122. DOI:http://dx.doi.org/10.1145/1943552.1943568

Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier Temam. 2014. Di-
anNao: A small-footprint high-throughput accelerator for ubiquitous machine-learning. In Proceedings of
the 19th International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’14). ACM, New York, NY, 269–284. DOI:http://dx.doi.org/10.1145/2541940.2541967

Jike Chong, Ekaterina Gonina, and Kurt Keutzer. 2011. Efficient automatic speech recognition on the GPU.
In GPU Computing Gems Emerald Edition, W.-M. W. Hwu (Ed.). Morgan Kaufmann, 601–618.

ClarityLab. 2015. Sirius: An Open End-to-End Voice and Vision Personal Assistant. Retrieved February 18,
2016, from http://sirius.clarity-lab.org.

George E. Dahl, Dong Yu, Li Deng, and Alex Acero. 2012. Context-dependent pre-trained deep neural
networks for large-vocabulary speech recognition. IEEE Transactions on Audio, Speech, and Language
Processing 20, 1, 30–42.

Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc
Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, and Andrew Y. Ng. 2012. Large scale distributed
deep networks. In Proceedings of the Conference on Neural Information Processing Systems (NIPS’12).

Tung H. Dinh, Dao Q. Vu, Vu-Duc Ngo, Nam Pham Ngoc, and Vu T. Truong. 2014. High throughput FPGA
architecture for corner detection in traffic images. In Proceedings of the 2014 IEEE 5th International
Conference on Communications and Electronics (ICCE’14). IEEE, Los Alamitos, CA, 297–302.

Paul R. Dixon, Tasuku Oonishi, and Sadaoki Furui. 2009. Harnessing graphics processors for the fast
computation of acoustic likelihoods in speech recognition. Computer Speech and Language 23, 4, 510–
526. DOI:http://dx.doi.org/10.1016/j.csl.2009.03.005

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012. Neural acceleration for
general-purpose approximate programs. In Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-45). IEEE, Los Alamitos, CA, 449–460.
DOI:http://dx.doi.org/10.1109/MICRO.2012.48

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

http://nutch.apache.org
https://www.apple.com/ios/siri/
http://dx.doi.org/10.1109/FCCM.2010.11
http://dx.doi.org/10.1145/1943552.1943568
http://dx.doi.org/10.1145/2541940.2541967
http://sirius.clarity-lab.org
http://dx.doi.org/10.1016/j.csl.2009.03.005
http://dx.doi.org/10.1109/MICRO.2012.48

Sirius: An Open End-to-End Voice and Vision Personal Assistant 2:29

Clément Farabet, Yann LeCun, Koray Kavukcuoglu, Eugenio Culurciello, Berin Martini, Polina Aksel-
rod, and Selcuk Talay. 2011. Large-scale FPGA-based convolutional networks. In Scaling Up Machine
Learning, R. Bekkerman, M. Bilenko, and J. Langford (Eds.). Cambridge University Press, 399–419.
http://yann.lecun.com/exdb/publis/pdf/farabet-suml-11.pdf.

Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Alisafaee, Djordje Jevdjic,
Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki, and Babak Falsafi. 2012. Clearing the
clouds: A study of emerging scale-out workloads on modern hardware. In Proceedings of the 17th In-
ternational Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS XVII). ACM, New York, NY, 37–48. DOI:http://dx.doi.org/10.1145/2150976.2150982

David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David Gondek, Aditya A. Kalyanpur, Adam
Lally, J. William Murdock, Eric Nyberg, John Prager, Nico Schlaefer, and Chris Welty. 2010. Building
Watson: An overview of the DeepQA project—Ferrucci—AI magazine. AI MAGAZINE 31, 3, 59–79.
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2303.

G. David Forney Jr. 1973. The Viterbi algorithm. Proceedings of the IEEE 61, 3, 268–278.
Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich feature hierarchies for accurate

object detection and semantic segmentation. In Proceedings of the Conference on Computer Vision and
Pattern Recognition.

GoogleAndroidWear. 2014. Android Wear. Retrieved February 18, 2016, from http://www.android.com/wear/.
GoogleGlass. 2014. Google Glass. Retrieved February 18, 2016, from http://www.google.com/glass.
GoogleNow. 2014. Google Now. Retrieved February 18, 2016, from http://www.google.com/landing/now/.
Alex Graves, Abdel-Rahman Mohamed, and Geoffrey Hinton. 2013. Speech recognition with deep recurrent

neural networks. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’13). IEEE, Los Alamitos, CA, 6645–6649.

J. Hauswald, T. Manville, Q. Zheng, R. Dreslinski, C. Chakrabarti, and T. Mudge. 2014. A hybrid approach
to offloading mobile image classification. In Proceedings of the 2014 IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP’14). IEEE, Los Alamitos, CA, 8375–8379.

Marti A. Hearst. 2011. ‘Natural’ search user interfaces. Communications of the ACM 54, 11, 60–67.
DOI:http://dx.doi.org/10.1145/2018396.2018414

Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel Rahman Mohamed, Navdeep Jaitly, Andrew Senior,
Vincent Vanhoucke, Patrick Nguyen, Tara Sainath, and Brian Kingsbury. 2012. Deep neural networks
for acoustic modeling in speech recognition. Signal Processing Magazine Article No. 38131.

Chang-Hong Hsu, Yunqi Zhang, Michael A. Laurenzano, David Meisner, Thomas Wenisch, Lingjia Tang,
Jason Mars, and Ron Dreslinski. 2015. Adrenaline: Pinpointing and reigning in tail queries with quick
voltage boosting. In Proceedings of the 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA’15). IEEE, Los Alamitos, CA, 10.

Xuedong Huang, James Baker, and Raj Reddy. 2014. A historical perspective of speech recognition. Commu-
nications of the ACM 57, 1, 94–103. DOI:http://dx.doi.org/10.1145/2500887

David Huggins-Daines, Mohit Kumar, Arthur Chan, Alan W. Black, Mosur Ravishankar, and Alex I.
Rudnicky. 2006. Pocketsphinx: A free, real-time continuous speech recognition system for hand-held
devices. In Proceedings of the 2006 IEEE International Conference on Acoustics, Speech, and Signal
Processing, Vol. 1. IEEE, Los Alamitos, CA, I.

IDCMobile. 2015. Smartphone OS Market Share, 2015 Q2.
IntelVTune. 2015. Intel VTune Home Page. Retrieved February 18, 2016, from https://software.intel.com/

en-us/intel-vtune-amplifier-xe.
Ravi Iyer, Sadagopan Srinivasan, Omesh Tickoo, Zhen Fang, Ramesh Illikkal, Steven Zhang, Vineet Chadha,

Paul M. Stillwell Jr., and Seung Eun Lee. 2011. CogniServe: Heterogeneous server architecture for large-
scale recognition. IEEE Micro 31, 3, 20–31.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio
Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093.

Jungsuk Kim, Jike Chong, and Ian R. Lane. 2012. Efficient on-the-fly hypothesis rescoring in a hybrid
GPU/CPU-based large vocabulary continuous speech recognition engine. In Proceedings of the 13th
Annual Conference on the International Speech Communication Association (INTERSPEECH’12).

Onur Kocberber, Boris Grot, Javier Picorel, Babak Falsafi, Kevin Lim, and Parthasarathy Ranganathan.
2013. Meet the walkers: Accelerating index traversals for in-memory databases. In Proceedings of the
46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-46). ACM, New York,
NY, 468–479.

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

http://yann.lecun.com/exdb/publis/pdf/farabet-suml-11.pdf
http://dx.doi.org/10.1145/2150976.2150982
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2303
http://www.android.com/wear/
http://www.google.com/glass
http://www.google.com/landing/now/
http://dx.doi.org/10.1145/2018396.2018414
http://dx.doi.org/10.1145/2500887
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe

2:30 J. Hauswald et al.

Rajeev Krishna, Scott Mahlke, and Todd Austin. 2003. Architectural optimizations for low-power,
real-time speech recognition. In Proceedings of the 2003 International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES’03). ACM, New York, NY, 220–231.
DOI:http://dx.doi.org/10.1145/951710.951740

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep con-
volutional neural networks. In Advances in Neural Information Processing Systems 25, F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Eds.). Curran Associates Inc., 1097–1105.
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convol utional-neural-networks.pdf.

John Lafferty, Andrew McCallum, and Fernando C. N. Pereira. 2001. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proceedings of the 18th International Conference
on Machine Learning (ICML’01). 282–289.

Michael Laurenzano, Yunqi Zhang, Lingjia Tang, and Jason Mars. 2014. Protean code: Achieving near-
free online code transformations for warehouse scale computers. In Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-47). ACM, New York, NY.

Kevin Lim, David Meisner, Ali G. Saidi, Parthasarathy Ranganathan, and Thomas F. Wenisch. 2013. Thin
servers with smart pipes: Designing SoC accelerators for memcached. In Proceedings of the 40th Annual
International Symposium on Computer Architecture (ISCA’13). ACM, New York, NY, 36–47.

Edward C. Lin, Kai Yu, Rob A. Rutenbar, and Tsuhan Chen. 2007. A 1000-word vocabulary, speaker-
independent, continuous live-mode speech recognizer implemented in a single FPGA. In Proceedings of
the 2007 ACM/SIGDA 15th International Symposium on Field Programmable Gate Arrays (FPGA’07).
ACM, New York, NY, 60–68. DOI:http://dx.doi.org/10.1145/1216919.1216928

Jan Van Lunteren, Christoph Hagleitner, Timothy Heil, Giora Biran, Uzi Shvadron, and Kubilay Atasu.
2012. Designing a programmable wire-speed regular-expression matching accelerator. In Proceedings of
the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-45). IEEE,
Los Alamitos, CA, 461–472. DOI:http://dx.doi.org/10.1109/MICRO.2012.49

Sergey Lyubka. 2009. SLRE: Super Light Regular Expression Library. Available at http://cesanta.com/.
Jason Mars and Lingjia Tang. 2013. Whare-map: Heterogeneity in homogeneous warehouse-scale computers.

In Proceedings of the 40th Annual International Symposium on Computer Architecture (ISCA’13). IEEE,
Los Alamitos, CA.

Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa. 2011. Bubble-up: Increasing
utilization in modern warehouse scale computers via sensible co-locations. In Proceedings of the 44th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-44). ACM, New York, NY,
248–259. DOI:http://dx.doi.org/10.1145/2155620.2155650

Jason Mars, Lingjia Tang, Kevin Skadron, Mary Lou Soffa, and Robert Hundt. 2012. Increasing
utilization in modern warehouse-scale computers using bubble-up. IEEE Micro 32, 3, 88–99.
DOI:http://dx.doi.org/10.1109/MM.2012.22

Binu Mathew, Al Davis, and Zhen Fang. 2003. A low-power accelerator for the SPHINX 3 speech
recognition system. In Proceedings of the 2003 International Conference on Compilers, Archi-
tecture, and Synthesis for Embedded Systems (CASES’03). ACM, New York, NY, 210–219.
DOI:http://dx.doi.org/10.1145/951710.951739

MicrosoftCortana. 2015. Cortana. Retrieved February 18, 2016, from http://www.windowsphone.com/
en-us/features-8-1.

MobileMarketing. 2014. Qualcomm Acquires Kooaba Visual Recognition Company. Retrieved Febru-
ary 18, 2016, from http://mobilemarketingmagazine.com/qualcomm-acquires-kooaba-visual-recognition-
company/.

NVIDIA cuDNN. 2015. NVIDIA cuDNN: GPU Accelerated Deep Learning. Retrieved February 18, 2016,
from https://developer.nvidia.com/cudnn.

Naoaki Okazaki. 2007. CRFsuite: A fast implementation of conditional random fields (CRFs). Retrieved
February 18, 2016, from http://www.chokkan.org/software/crfsuite/.

Vinicius Petrucci, Michael A. Laurenzano, Yunqi Zhang, John Doherty, Daniel Mosse, Jason Mars, and Lingjia
Tang. 2015. Octopus-man: QoS-driven task management for heterogeneous multicore in warehouse
scale computers. In Proceedings of the 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA’15). IEEE, Los Alamitos, CA, 10.

Nico Piatkowski. 2011. Linear-Chain CRF@GPU. Retrieved February 18, 2016, from http://sfb876.tu-
dortmund.de/crfgpu/linear_crf_cuda.html.

Martin F. Porter. 1980. An algorithm for suffix stripping. Program: Electronic Library and Information
Systems 14, 3, 130–137.

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

http://dx.doi.org/10.1145/951710.951740
http://dx.doi.org/10.1145/1216919.1216928
http://dx.doi.org/10.1109/MICRO.2012.49
http://cesanta.com/
http://dx.doi.org/10.1145/2155620.2155650
http://dx.doi.org/10.1109/MM.2012.22
http://dx.doi.org/10.1145/951710.951739
http://www.windowsphone.com/en-us/features-8-1
http://www.windowsphone.com/en-us/features-8-1
http://mobilemarketingmagazine.com/qualcomm-acquires-kooaba-visual-recognition-company/
http://mobilemarketingmagazine.com/qualcomm-acquires-kooaba-visual-recognition-company/
https://developer.nvidia.com/cudnn
http://www.chokkan.org/software/crfsuite/
http://sfb876.tu-dortmund.de/crfgpu/linearcrfcuda.html
http://sfb876.tu-dortmund.de/crfgpu/linearcrfcuda.html

Sirius: An Open End-to-End Voice and Vision Personal Assistant 2:31

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek, Nagendra Goel, Mirko
Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, Jan Silovsky, Georg Stemmer, and Karel Vesely.
2011. The Kaldi speech recognition toolkit. In Proceedings of the IEEE 2011 Workshop on Automatic
Speech Recognition and Understanding. IEEE, Los Alamitos, CA.

Andrew Putnam, Adrian Caulfield, Eric Chung, Derek Chiou, Kypros Constantinides, John Demme, Hadi
Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck,
Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, Jim Larus, Eric Peterson, Simon Pope,
Aaron Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. 2014. A reconfigurable fabric for accel-
erating large-scale datacenter services. In Proceedings of the 41st Annual International Symposium on
Computer Architecture (ISCA’14). http://research.microsoft.com/apps/pubs/default.aspx?id=212001.

Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. 2011. ORB: An efficient alternative to
SIFT or SURF. In Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV’11).
IEEE, Los Alamitos, CA, 2564–2571.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet
large scale visual recognition challenge. International Journal of Computer Vision 115, 3, 211–252.
DOI:http://dx.doi.org/10.1007/s11263-015-0816-y

David Rybach, Stefan Hahn, Patrick Lehnen, David Nolden, Martin Sundermeyer, Zoltan Tüske, Siemon
Wiesler, Ralf Schlüter, and Hermann Ney. 2011. RASR—the RWTH Aachen University Open Source
Speech Recognition Toolkit. In Proceedings of the IEEE Automatic Speech Recognition and Understand-
ing Workshop.

Frank Seide, Gang Li, and Dong Yu. 2011. Conversational speech transcription using context-
dependent deep neural networks. In Proceedings of the 12th Annual Conference of the International
Speech Communication Association (INTERSPEECH’11). 437–440. http://msr-waypoint.com/pubs/
153169/CD-DNN-HMM-SWB-Interspeech2011-Pub.pdf.

M. G. Siegler. 2011. Apple’s Massive New Data Center Set to Host Nuance Tech; Partnership Announcement
Due at WWDC. Retrieved February 18, 2016, from http://techcrunch.com/2011/05/09/apple-nuance-data-
center-deal/.

A. Singh, N. Kumar, S. Gera, and A. Mittal. 2010. Achieving magnitude order improvement in Porter
Stemmer algorithm over multi-core architecture. In Proceedings of the 2010 7th International Conference
on Informatics and Systems (INFOS’10). 1–8.

Yuliang Sun, Zilong Wang, Sitao Huang, Lanjun Wang, Yu Wang, Rong Luo, and Huazhong Yang. 2014.
Accelerating frequent item counting with FPGA. In Proceedings of the 2014 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays (FPGA’14). ACM, New York, NY, 109–112.
DOI:http://dx.doi.org/10.1145/2554688.2554766

Sriram Swaminathan, Russell Tessier, Dennis Goeckel, and Wayne Burleson. 2002. A dynamically
reconfigurable adaptive Viterbi decoder. In Proceedings of the 2002 ACM/SIGDA 10th Interna-
tional Symposium on Field-Programmable Gate Arrays (FPGA’02). ACM, New York, NY, 227–236.
DOI:http://dx.doi.org/10.1145/503048.503081

Lingjia Tang, Jason Mars, Wei Wang, Tanima Dey, and Mary Lou Soffa. 2013a. ReQoS: Reactive
static/dynamic compilation for QoS in warehouse scale computers. In Proceedings of the 18th Inter-
national Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’13). ACM, New York, NY, 89–100. DOI:http://dx.doi.org/10.1145/2451116.2451126

Lingjia Tang, Jason Mars, Xiao Zhang, Robert Hagmann, Robert Hundt, and Eric Tune. 2013b. Optimizing
Google’s warehouse scale computers: The NUMA experience. In Proceedings of the 2013 IEEE 19th
International Symposium on High Performance Computer Architecture (HPCA’13). IEEE, Los Alamitos,
CA, 188–197. DOI:http://dx.doi.org/10.1109/HPCA.2013.6522318

ThinkMate. 2014. RAX XF2-1130V3-SH. Retrieved February 18, 2016, from http://www.thinkmate.com/
system/rax-xf2-1130v3-sh.

Erik F. Tjong, Kim Sang, and Sabine Buchholz. 2000. Introduction to the CoNLL-2000 shared
task: Chunking. In Proceedings of the 2nd Workshop on Learning Language in Logic and the
4th Conference on Computational Natural Language Learning—Volume 7 (ConLL’00). 127–132.
DOI:http://dx.doi.org/10.3115/1117601.1117631

Oscar Tackstrom, Dipanjan Das, Slav Petrov, Ryan McDonald, and Joakim Nivre. 2013. Token and type
constraints for cross-lingual part-of-speech tagging. Transactions of the Association for Computational
Linguistics 1, 1–12.

J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders. 2013. Selective search
for object recognition. International Journal of Computer Vision 104, 2, 154–171. https://ivi.fnwi.uva.
nl/isis/publications/2013/UijlingsIJCV2013.

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

http://research.microsoft.com/apps/pubs/default.aspx?id$=$212001
http://dx.doi.org/10.1007/s11263-015-0816-y
http://techcrunch.com/2011/05/09/apple-nuance-data-center-deal/
http://techcrunch.com/2011/05/09/apple-nuance-data-center-deal/
http://dx.doi.org/10.1145/2554688.2554766
http://dx.doi.org/10.1145/503048.503081
http://dx.doi.org/10.1145/2451116.2451126
http://dx.doi.org/10.1109/HPCA.2013.6522318
http://www.thinkmate.com/system/rax-xf2-1130v3-sh
http://www.thinkmate.com/system/rax-xf2-1130v3-sh
http://dx.doi.org/10.3115/1117601.1117631
https://ivi.fnwi.uva.nl/isis/publications/2013/UijlingsIJCV2013
https://ivi.fnwi.uva.nl/isis/publications/2013/UijlingsIJCV2013

2:32 J. Hauswald et al.

Giorgos Vasiliadis, Michalis Polychronakis, Spiros Antonatos, Evangelos P. Markatos, and Sotiris Ioanni-
dis. 2009. Regular expression matching on graphics hardware for intrusion detection. In Proceedings
of the 12th International Symposium on Recent Advances in Intrusion Detection (RAID’09). 265–283.
DOI:http://dx.doi.org/10.1007/978-3-642-04342-0_14

Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. 2013. Bubble-flux: Precise online QoS man-
agement for increased utilization in warehouse scale computers. In Proceedings of the 40th An-
nual International Symposium on Computer Architecture (ISCA’13). ACM, New York, NY, 607–618.
DOI:http://dx.doi.org/10.1145/2485922.2485974

Yi-Hua E. Yang, Weirong Jiang, and Viktor K. Prasanna. 2008. Compact architecture for high-throughput
regular expression matching on FPGA. In Proceedings of the 4th ACM/IEEE Symposium on Ar-
chitectures for Networking and Communications Systems (ANCS’08). ACM, New York, NY, 30–39.
DOI:http://dx.doi.org/10.1145/1477942.1477948

Yunqi Zhang, Michael Laurenzano, Jason Mars, and Lingjia Tang. 2014. SMiTe: Precise QoS prediction on
real system SMT processors to improve utilization in warehouse scale computers. In Proceedings of the
47th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-47). ACM, New York,
NY.

Received October 2015; accepted December 2015

ACM Transactions on Computer Systems, Vol. 34, No. 1, Article 2, Publication date: April 2016.

http://dx.doi.org/10.1007/978-3-642-04342-0_14
http://dx.doi.org/10.1145/2485922.2485974
http://dx.doi.org/10.1145/1477942.1477948

